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1. Introduction
As was noted in our recent review,1 the protein folding

field underwent a cyclic development. Initially, protein
folding was viewed as a strictly experimental field belonging
to the realm of biochemistry, where each protein is viewed
as a unique system that requires its own detailed characteriza-
tionsakin to any mechanism in biology. The theoretical
thinking at this stage of development of the field was
dominated by the quest to solve the so-called “Levinthal
paradox” that posits that a protein could not find its native
conformation by an exhaustive random search. Introduction,
in the early 1990s, of simplified models to the protein folding
field and their success in explaining several key aspects of
protein folding, such as two-state folding of many proteins,
the nucleation mechanism, and its relation to native state
topology, have pretty much shifted thinking toward views
inspired by physics. The “physics”-centered approach focuses
on the statistical mechanical aspect of the folding problem
by emphasizing the universality of folding scenarios over
the uniqueness of the folding pathways for each protein. Its
main achievement is a solution of the protein folding problem
in principle, i.e., a demonstration of how proteinscouldfold.
As a result, a “psychological” solution of the Levinthal
paradox was found (i.e. it was generally understood that this
is not a paradox, after all). The key success of this stage of
the field is the discovery of the general requirements for
polypeptide sequences to be cooperatively foldable stable
proteins and the realization that such requirements can be
achieved by sequence selection. That put the field strongly
into the realm of biology (“Nothing in Biology makes sense
except in the light of Evolution” (Theodosius Dobzhansky)).
The physics-based fundamental approach to protein folding
dominated theoretical thinking in the past decade (reviewed
in refs 1-4), and its successes brought theory and experiment
closer together.* E-mail: Shakhnovich@chemistry.harvard.edu.
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At the present stage, we seek a better understanding of
how the protein folding problem isactuallysolved in Nature.
In this sense, the protein folding field has made a full circle,
as attention is again focused on specific proteins and details
of their folding mechanism. However, these questions are
asked at a new level of sophistication of both theory and
experiment. Understanding of general principles of folding
and vastly improved computer power make it possible to
develop tractable models that sometimes achieve an atomic
level of accuracy. Further, a better general understanding of
the requirements for polypeptide sequences to fold led to
establishment of direct links between protein folding and
evolution of their sequences. This development created an
opportunity to employ powerful methods of bioinformatics
to test predictions of various folding models, in addition to
more traditional tests of models against experiment. After
all, evolution presents a giant natural laboratory where
sequences are designed to fold and function and the avail-
ability of vast amounts of data certainly calls for its use to
better understand folding of proteins at very high resolution.
At the same time, in vitro experimental approaches pro-
gressed to the point that very accurate time- and structure-
resolved data are available. A close interaction with experi-
mentalists helps to keep theorists honest by providing detailed
tests of theories and simulation results.

In this review, which to a great extent reflects the thinking
of the author on the subject, we will first summarize basic
questions and present simple, coarse-grained models that
provide a basis for a fundamental understanding of protein
folding thermodynamics and kinetics. Then, we will discuss
more recent developments (over the last five years) that focus
on detailed studies of folding mechanisms of specific
proteins, and finally, we will briefly discuss some outstanding
questions and future directions.

2. Random and Designed Heteropolymers sA
Fundamental Model of Protein Folding

2.1. Random Heteropolymers Do Not Fold
Cooperatively

At the very basic level of coarse-grained microscopic
models, statistical mechanics provided tools that facilitated
our understanding of many fundamental and universal
properties of proteins. A fundamental statistical-mechanical
model of a protein is a heteropolymeric molecule.5 Its study
provided many insights into thermodynamic and kinetic
properties of proteins.5-8

Studies of protein folding using coarse-grained protein
models followed two routes; A phenomenological approach
was proposed by Bryngelson and Wolynes, whopostulated
a certain type of energy landscape (random-energy-model-
like) for a protein-like molecule and explored the conse-
quences of such a postulated energy landscape for protein
thermodynamics6 and kinetics.9 The random energy model
was introduced by Derrida as the simplest model of spin
glasses.10 It is a phenomenological model that assumes that
a system has M microstates (in the case of proteins, each
microstate is a conformation) and that the energies of these
microstates represent statistically independent random values
drawn from a Gaussian distribution. Bryngelson and Wolynes
postulated just that for energies of different conformations
of a protein-like heteropolymer. In addition to that, they
postulated that proteins also have a special conformations
the native statesand that each amino acid can be either in
its native conformation or in any ofν non-native ones. The
authors adopted “The Consistency Principle” proposed by
Go11 (termed in ref 6 as the “Principle of minimal frustra-
tions”) by assuming that when amino acids are in their native
conformations their intrinsic energy, secondary structure
energy, and pairwise interaction energy are lower than those
for interacting amino acids that adopt non-native conforma-
tions.

An alternative approach was proposed by Garel and
Orland12 and Shakhnovich and Gutin.5 It is based on a
statistical-mechanical analysis of a microscopic model that
does not assume any landscape or conformational preferences
a priori. Rather, it derives the energy landscape of a model
protein from “first principles”si.e., by taking into account
only a polypeptide chain connectivity and a known set of
interactionssand evaluates its consequences for the ther-
modynamics and kinetics of folding.

The statistical-mechanical model defines a microscopic
Hamiltonian, i.e., how the energy of a conformation depends
on the coordinates of all its atoms and on the (fixed) protein
sequence:

where a conformation is determined through a set of its
atomic coordinates{ri}. The protein chain’s sequence is{σi},
and the interaction energy between amino acids of typesσj

and σi depends on the distance between them (via the
potential energy functionU(ri - rj)) and their chemical
identitiessvia the interaction potential matrixB. The partition
function of the model protein is a sum over all its conforma-
tions:

Eugene Shakhnovich received his M.S. in 1981 in Theoretical Physics
from Moscow University. In 1984, he received his Ph.D. in Theoretical
Biophysics and Molecular Biology from the Russian Academy of Sciences.
He was a Research Fellow and Senior Research Fellow at the Institute
of Protein Research of the then Soviet Academy of Sciences until his
arrival at Harvard in 1990, where he held Assistant (1991−1995) and
Associate (1995−1997) Professorships. He is now Full Professor of
Chemistry, Chemical Biology, and Biophysics (since 1997) at Harvard.
His research interests include theoretical studies of protein folding, evolution
and design, rational drug design, the theory of complex systems,
bioinformatics, and theoretical material science. He is the author of more
than 220 publications and is a recipient of several awards and fellowships.
He is a member of several editorial boards. In 2001, he cofounded Vitae
Pharmaceuticals, a vibrant pharmaceutical company which incorporates
computational approaches developed by the Shakhnovich lab into their
drug discovery platform.

H({ri},{σi}) ) ∑
i<j

B(σi,σj) U(ri - rj) (2.1)

1560 Chemical Reviews, 2006, Vol. 106, No. 5 Shakhnovich



whereg(ri - rj) is a function describing the connectivity of
a chain;13 it accounts for the chemical structure of the
polypeptide representing the (conditional) probability that
residuei + 1 is found aroundri+1 when the preceding residue,
i, is atri. Several forms for the functiong were proposed in
the literature;13,14 selection ofg corresponds to the model
choice of the local (along the sequence) interactions; such a
choice determines the mechanism of flexibility of a polypep-
tide chain. In principle, eqs 2.1 and 2.2 are sufficient to fully
evaluate the sequence-dependent thermodynamic properties
of a protein model. In practice, their solution and analysis
present a formidable task both conceptually and technically.

Conceptually, the issue is what questions can be meaning-
fully asked within such a theoretical framework? It is quite
clear that a low-resolution description is not suitable for
prediction of thermodynamic and kinetic properties of
specific proteins. Apparently, this class of coarse-grained
models may be most suitable to address questions related to
generic properties of proteins, common to all of them or to
a wide range of protein sequences. Some questions that
received much attention in the context of coarse-grained
analytical models are as follows:

(1) What are the general requirements for sequences to
be protein-like, i.e., to have astableunique native structure
as its lowest energy conformation?

(2) Which sequences fold cooperatively (i.e. thermody-
namically two-state) into their native conformation?

(3) Are the thermodynamic requirements of the stability
and cooperativity of the native conformation sufficient to
make this conformation kinetically accessible, or is additional
sequence selection necessary to ensure kinetic accessibility?

A key technical difficulty in studying the heteropolymer
model of proteins is that proper averaging over sequences
is required. This represents both a conceptual and technical
challenge. Conceptually, the difficulty is that one has to select
such properties of a heteropolymer whose average values
are representative of the majority of individual realizations,
i.e., whose probability distributions are sharply peaked
around average values. In this case, evaluation of averages
will be meaningful, as it will describe a majority of individual
molecules.Physical quantities whose aVerages are repre-
sentatiVe of a majority of realizations of a random system
are called self-aVeraging. It was shown, first in the theory
of spin glasses, that free energy (i.e.-kT ln Z) is a self-
averaging quantity, while, e.g., the partition function itself,
Z, is not self-averaging. This can be understood if one realizes
that very rare, atypical realizations of sequences (e.g ho-
mopolymers) can make exponentially large contributions to
the partition function. As a result, despite the fact that such
realizations are extremely rare (e.g. the probability to have
a polyvaline molecule ofN residues in the ensemble of
randomly synthesized sequences is 20-N), the overall con-
tributions from such atypical sequences to the average
partition function may be significant since their energy in
some conformations (e.g. compact globule) may be very low,
so low that their Boltzmann factor exp(-H/kT) in eq 2.2
overwhelms the weight 20-N corresponding to the slim
probability to find such a sequence. As a result, the average
partition function may be heavily affected by sequences that
are very atypical members of the ensemble of protein
sequences. On the other hand, contributions of very atypical

sequences to thefree energy are at most∼N, and such
contributions from highly atypical sequences are easily
overwhelmed by the exponentially low probability of their
occurrence.

Therefore, to obtain a representative description of protein
thermodynamics in an analytical heteropolymer model, one
should average, over sequences in the ensemble,the free
energyof a protein chain

where〈 〉 denotes the average over all sequences,P({σ}) is
the probability of occurrence of a sequence{σ} in the
ensemble, and the summation is taken over all sequences.
The next and even more conceptually difficult question is
over which ensemble of sequences to take the average in eq
2.3. Averaging over an unbiased ensemble of all possible
sequences (i.e. assumingP ) constant in eq 2.3) means that
protein sequences are treated as being randomly selected
from the pool of all possible sequences, i.e., that no
evolutionary selection (pressure) on protein sequences is
assumed. Averaging over a biased ensemble of sequences
corresponds to evolutionary selected sequences. Thus, pos-
sible evolutionary selection enters the theory via the prob-
ability distributionP{σ} in sequence space (see below).

Averaging in eq 2.3 is a daunting task because the partition
function to be averaged enters it under logarithm. However,
it is possible to evaluate〈F〉 in eq 2.3 using the replica
approach which was first proposed by Edwards and Ander-
son15 and then significantly developed further by Parisi and
co-workers16 in the context of spin glass studies. The replica
method is an ansatz based on the relation

and the observation that〈Zn〉 is relatively easy to evaluate
when n is an integersit is the average,oVer all sequence
realizations,partition function ofn identical systems (rep-
licas, hence replica method). While analytic continuation of
expression 2.4 to noninteger values ofn is a mathematically
very challenging task whose subtleties are not still fully
understood, the technique was sufficiently developed in spin
glass theory to provide major insight into its equilibrium and
nonequilibrium properties.

Heteropolymer theory as the basis for a fundamental
understanding of protein folding was developed within the
framework of the replica approach by Shakhnovich and co-
workers.5,17-19 Detailed analysis based on eqs 2.1-2.4 not
only revealed thermodynamic properties of random het-
eropolymers but also provided major insights into the nature
of their energy landscape. It turns out that replica averaging
over sequences results in an emergence of the order
parameter that turns out to be extremely useful to understand
the general properties of the energy landscape of heteropoly-
mers. To see this, we consider the simplest case of a contact
Hamiltonian:

whereδ denotes that two amino acids interact (with energy
B(σi,σj)) depending on their typesσi,σj when they are in
spatial proximity to each other. (An important nonspecific

Z ) ∑
conf

g(ri - ri+1) exp(- H({ri},{σi})

kT ) (2.2)

〈F(T)〉 ) -kT∑
{σ}

P({σ}) log(Z({σ},T)) (2.3)

H({ri}) )
1

2
∑
i,j

N

B(σi,σj) δ(ri - rj) (2.5)
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three-particle interaction term is omitted in eq 2.5 for brevity;
the full analysis is in ref 5. Further, assume, following ref
5, that interaction energiesBij ) B(σi,σj) can be approximated
as independent random values drawn from a Gaussian
distribution, i.e.,

and

where B is a standard deviation of interaction energies
between different types of amino acids andB0 is an average
interaction: ifB0 < 0, attraction prevails, on average, giving
rise to the tendency to chain collapse, and ifB0 > 0, repulsion
prevails, on average.

Averaging ofZn over sequences leads to the expression

Here, the new “replica index”R appeared as a direct
consequence of averaging then-th power of the partition
function. One can view it mnemonically as averaging the
partition function ofn identical sequences that do not interact
among themselves. Averaging over sequences in eq 2.8 (i.e.
integration over dBij) is performed first; it amounts to
evaluation of many independent Gaussian integrals. The
result of averaging over sequences is emergence of an
effective Hamiltonian such that

where

where B̃ ) B0 - B2/2kT is the renormalized (due to the
heterogeneity of interactions) “average” interaction strength.
The second term is most important, as it introduces a new
and extremely valuable order parameter that “mixes” dif-
ferent replicas (we remind the reader that Greek lettersR,
â, etc. denote replicas here)

whose simple physical meaning can be understood when one
considers the analogy between replicas (marked by the

indexesR, â, etc.) and configurations of the heteropolymer
chain in its deep energy minima where it spends a significant
amount of time. Note again thatδ-symbols in eq 2.11 count
contacts; that is, they are 1 if monomersi andj are in contact
(i.e. within a certain short distance from each other) and 0
otherwise. Apparently, the order parameter introduced in eq
2.11 counts the number of common contacts, i.e., the
structural overlap, between chains in two configurations
corresponding to deep energy minima. The quantity that
provides a comprehensive description of the energy landscape
of the heteropolymer is then

wherep({rR}) is the Boltzmann probability of being in a
state where the chain has coordinates{rR}. It is quite clear
that only deep minima contribute toP(Q) because only for
them do Boltzmann probabilitiesp have noticeable values.
The physical meaning of eq 2.12 is simple. If one statistically
samples conformations with their thermal probabilities (so
that only conformations residing in deep energy minima
contribute), thenP in eq 2.12 is the probability that
conformations from two minima have structural similarity
Q. In other words,P statistically characterizes the landscape
in terms of how structurally different deep minima are.

The detailed calculations and analysis carried out along
these lines in a series of publications5,17,18 (reviewed in ref
19) provide a comprehensive description of the thermody-
namic properties and energy landscape of random het-
eropolymers. It turns out that properties of random het-
eropolymers depend on the dimensionality of space in which
they are embedded, withd ) 2 being a critical dimension
separating two qualitatively different types of behavior. The
analysis of the low-dimensional cased e 2 was carried out
in refs 20 and 21, where it was shown that the energy
landscape in this case is hierarchical, “smooth” in the sense
that most low-energy conformations have significant struc-
tural similarity to the conformation with lowest energy, the
“native” one. It was argued in ref 21 that this property of
the energy landscape of low-dimensional heteropolymers is
due to a very important role that polymer bonds play in this
case: in compact states of low-dimensional polymers, the
majority of contacts appear to be between residues that are
near each other along the chain. While the low-dimensional
heteropolymer case is of little relevance to proteins, the
replica-space variational approach developed in ref 21 to treat
such heteropolymers was used by Mezard and Parisi to study
random manifolds22 and since then has been adopted in
various fields, including studies of polymer gels23 and certain
types of fermionic systems, including high-Tc superconduc-
tors.24

The full analysis for a more relevant case of 3-dimensional
space5,20 showed that the “energy landscape” of random
heteropolymers is “rugged” in the sense that it consists of
several deep energy minima of comparable (differing by just
a few kT per molecule) energies but that conformations
belonging to these minima are structurally unrelated. These
deep energy minima which are structurally very different
from the native state can serve as traps en route to the native
stateshence their possible importance for folding kinetics.
Thermodynamically a significant fraction of random het-
eropolymers can be stable in the “native state” (lowest energy
conformation),25 but that can happen only at low enough
temperature, and most importantly, the transition to the native

P{σ} ) ∏
i,j

p(Bij) (2.6)

p(Bij) ) 1

(πB2)1/2
e-(Bij-B0)2/2B2

(2.7)

〈Zn〉 ) ∫∏
R)1

n

∏
i)1

N-1

g(ri
R - ri+1

R )

exp{-

1

2
∑
R)1

n

∑
i,j

N

Bijδ(ri
R - rj

R)

kT
} ∏

i,j)1

N

p(Bij) dBij ∏
i,R

N,n

dri
R

(2.8)

〈Zn〉 ) ∫∏
R)1

n

∏
i)1

N-1

g(ri
R - ri+1

R ) exp{-
Heff{ri

R}

kT
}∏

i,R

N,n

dri
R

(2.9)

Heff{ri
R} )

1

2
B̃ ∑

R,i*j

δ(ri
R - rj

R) -

B2

4kT
∑
R*â

∑
i*j

δ(ri
R - rj

R) δ(ri
â - rj

â) (2.10)

qRâ ) ∑
i

δ(ri
R - rj

R) δ(ri
â - rj

â) (2.11)

P(Q) ) ∑
{rR},{râ}

p({rR}) p({râ}) δ(Q - qRâ) (2.12)
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state upon temperature decrease is gradual, akin to the
transition to the zero entropy state in the random energy
model.5,10

The approximation of mutually statistically independent
Gaussian-distributed energies of interactionsbetween amino
acids(eq 2.5) simplifies calculations significantly. It corre-
sponds to the case when the number of amino acid types is
large.20 The opposite case, that of only two types of amino
acids, such as hydrophobic and polar, was solved in 1993
by Sfatos et al.17 In this case, one can no longer assume
independence of interaction energies between amino acids
and a new theoretical formalism (a version of the Stratono-
vich-Hubbard transformation) was developed to tackle this
issue. A new factor has to be considered in the case of
heteropolymers with two types of amino acidssthe possibil-
ity of microphase separation of amino acids of different types
(e.g. separation between the hydrophobic core and the
hydrophilic surface). An interesting result of the analysis of
the “two-letter” heteropolymers is that microphase separation
and chain “freezing” (i.e. dominance of one or very few
lowest-energy structures) may in certain cases compete with
each other; for example, chain freezing may prevent mi-
crophase separation under certain conditions (see ref 26,
where a complete phase diagram of a two-letter random
heteropolymer is presented). However, the energy landscape
in the case of “two-letter” random heteropolymers appears
to be the same as that for the model of independent
interactionssconsisting of sets of deep energy minima
corresponding to conformations that are structurally unrelated
to each other. A general case of multiletter heteropolymers
was considered in ref 18. A detailed, more technical,
discussion of these issues and further references can be found
in the 1997 review by Sfatos and Shakhnovich.19

2.2. Theory of Evolutionary Selected Sequences:
Proteinlike Cooperative Behavior

The main conclusion from the analysis of random het-
eropolymers is that they do not exhibit many protein-like
properties such as cooperativity of their folding transition.6,27

Further, it was shown that native structures of random
heteropolymers are extremely susceptible to mutations: The
probability that a random mutation in a random heteropoly-
mer does not result in a dramatic change of native structure
was found in ref 28 to be very slim. Apparently, such
instability to mutations is not conducive to proper evolution-
ary selection and is in direct disagreement with genomic
observations.

The inadequacy of the random heteropolymer model to
describe proteins is perhaps not surprising as proteins are
biological macromolecules whose sequences underwent
evolutionary selection. In particular, it was first posited by
Go11 that proteins should have special properties, such as
“consistency between different types of interactions and
structures”,11 and later by Bryngeslon and Wolynes that all
interactions between amino acids that are in their native
conformations are energetically preferable by a certain
margin.6 Bryngelson and Wolynes carried out a kinetic
analysis of the same model. Their kinetic assumption was
that attempts at transitions occur between states whose
energies are uncorrelated and the dynamics (acceptance or
rejection of the attempt to move between states) is governed
by the Metropolis criterion. The conclusion from calculations
presented in ref 9 was that there exists a particular temper-
ature, calledTg (“g” stands for glass), and that at all

temperatures at or belowTg the folding time of a protein
equals the Levinthal time.9 According to the Bryngelson and
Wolynes calculations, the fastest folding apparently occurs
in their model at infinite temperature (see Figure 3 of ref 9),
but the reason for this unphysical result may be due to the
dependence of the parameters of the model on temperature.
The Bryngelson and Wolynes study of kinetics within the
REM approximation and their prediction of the glass
transition were further analyzed by Gutin et al.29 Besides
pointing out the technical issues with the Bryngelson and
Wolynes kinetic REM calculation,9 these authors carried out
folding simulations for the lattice model within a broad range
of temperatures and for several native structures. They found
no signature of the glass transition in these simulationss
just a pure Arrenhius dependence of folding rate on tem-
perature and an exponential distribution of folding times.
Gutin et al. proposed a simple REM-based phenomenological
model of kinetics that correctly reproduced the temperature
dependence of folding rates in simulations.29

An analytical replica-based study of the microscopic model
similar in spirit to that of Go was performed in 1989 by
Shakhnovich and Gutin.30 The interaction Hamiltonian was
assumed in ref 30 to be Go-like:

where{r0} is the set of coordinates of the native conforma-
tion andB0 is the average interaction energy. The first term
in eq 2.13 is a manifestation of the Go model: it posits that
interactions between amino acids that are in contact in the
native conformation are energetically favorable by energy
marginB. The Go model eq 2.13 presented in ref 30 features
an important property: the native conformation, havingnc

contacts, is separated by an extensive energy gap,Bnc, from
the set of misfolded compact conformations (molten-globule-
like). This is a defining feature of most Go models, at least
in 3-dimensional space. The full statistical-mechanical
analysis of the model in eq 2.1330 (where the replica method
was used to average free energy over all possible native
conformations{r0}) showed that in this case the transition
to the native state occurs as a true cooperative, first-order-
like phase transition.

While earlier works6,9,11,30relied explicitly on the assump-
tion that amino acids in their native conformations or making
native contacts have a special energetic preference, a more
general thermodynamic condition for heteropolymers to be
protein-like was discussed in ref 25. The authors of ref 25
studied the conditions for thermodynamic stability of the
unique native state and introduced explicitly the concept of
energy gap, i.e., the energy difference between the lowest
energy (native) state and the lowest energy misfold as the
main factor that determines the thermodynamic stability of
the native state. Further, they determined the probability that
heteropolymers with unique native states can be found in a
“one-shot” selection from the pool of random sequences, at
a certain temperature. They found that one-shot selection is
able to find (with low but nonvanishing probability) se-
quences that have a large gap and, correspondingly, a stable
native structure. However, while the condition of thermo-

H({ri}) ) -
1

2
∑
i,j

N

Bδ(ri - rj) δ(ri
0 - rj

0) +

1

2
∑
i,j

N

B0δ(ri - rj) (2.13)
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dynamic stability of the native state, found in ref 25, indeed
requires a large enough gap (severalkT), it does not require
that the gap is extensive in chain length (i.e. proportional to
chain length when different proteins are compared). Accord-
ing to ref 25, the probability of finding a sequence with a
stable native state in a “soup” of random heteropolymers
becomes extremely low if the temperature exceedsTcsthe
temperature of the freezing transition in the heteropolymer
model of refs 5 and 20 (same asTg of refs 6 and 9).

In 1992 Goldstein et al.31 presented a phenomenological
model that explicitly assumed, without resorting to special
“nativelike” interactions, that the native state is separated
by an energy gap from the set of non-native conformations.
Their reasoning was that, in order to be able to fold, proteins
must be stable at temperatures aboveTg; that is, their
unfolding temperatureTf must be higher thanTg. Further,
they introduced the ratioTf/Tg as a criterion of protein
foldability and sought to optimize the energy parameters for
the protein Hamiltonian to maximize this quantity. In fact,
the “glass transition temperature” of Goldstein et al.31 is
equivalent to the putative freezing transition temperature in
a fully random system that is identical to the phenomeno-
logical protein modelshas the same set of statessbut without
the single unique, specific native state. A detailed analysis
and critique of the concept of glass transition in heteropoly-
mer systems can be found in ref 29. In a somewhat similar
vein, Camacho and Thirumalai32 suggested a “foldability
criterion” of Tf/Tθsthe ratio between folding temperature and
random collapse temperature. Dinner et al.33 provided a
comparative analysis of various foldability criteria.

In fact, theTf/Tg criterion of Wolynes et al. is equivalent
to the requirement that the native state is separated by an
energy gap from misfolds.31 The difference between this
important criterion of Wolynes and colleagues and the earlier
gap analysis of Shakhnovich and Gutin25 is that theTf/Tg >
1 criterion implies that the energy gap is extensive, i.e.,
proportional to chain length (that can be discerned from eq
2 of ref 31 upon straightforward additional analysis). In
contrast, the analysis in ref 25 suggested that the thermo-
dynamic stability of the native state alone does not require
extensive gaps. However, extensive gaps provide not only
stability to the native state but also a cooperative, first-order-
like folding transition.

An important insight from microscopic theory30 and
phenomenological models27,31 is that the existence of an
extensive energy gap between the low-energy native con-
formation and the lowest energy non-native, misfolded,
conformation issufficient to make folding the transition
cooperative and first-order-like, as is indeed observed in
many wild-type proteins.34 However, at that time (late 1980s
and early 1990s), it was unclear to many researchers whether
a large (extensive) energy gap is also anecessarycondition
for cooperative protein folding. Indeed, theoretical analysis35

suggested that a cooperative transition may originate from
other physical factors such as side-chain ordering, while the
energy gap, being still very important to stabilize the native
state at room temperature,25 does not need to be extensive
in chain length. While phenomenological models clearly
highlighted a possible role of the extensive energy gap, it
was not entirely convincing at the time. The issue that
concerned many researchers at the moment was that it was
not clear how large energy gaps can be achieved in a realistic
evolutionary scenario where sequences are allowed to vary
in evolution but not physical interactions between amino

acids. “Maximal consistency” Go models essentially posited
that interactions between amino acids depend on whether
they are neighbors in their native states or not. Such a
postulate is not entirely physical; for example, interaction
between, say, valine and tryptophan is the same in any
conformation regardless of whether these two amino acids
are neighbors in the native state of the protein or not. “The
minimal frustration” model of Bryngelson and Wolynes
postulated that each amino acid has a special “native”
conformation,6 but it is not very clear how that may come
about physically: the same amino acid can have different
native conformations in different proteins, and it is also hard
to imagine that amino acids keep a memory of their native
conformations in any other conformation; that is, when
proteins are synthesized, amino acids do not “know” what
their native conformation would be. It is equally hard to
imagine, on physical grounds, that the set of states of a
protein can feature a multitude of non-native, liquidlike states
and just one, single native conformation as was assumed in
ref 31. For such an idealized density of states, the first-order
folding transition emerges by construction: As temperature
decreases, a protein has no other “choice” rather than to make
a discrete jump to the postulated single native state. However,
in reality, a protein’s density of states is not discrete with a
single native conformation at the bottom and a gap devoid
of any conformations in between, but is a continuous plethora
of states varying from very nativelike to totally dissimilar
to native. (Reminder: the gap is defined as the energy
difference between the native conformation and the lowest
energystructurally dissimilarconformation.) So, in reality,
it becomes much less obvious if the transition to the native
state is the first-order one even if a sequence has an extensive
gap. In fact, this issue can be resolved only in microscopic,
not phenomenological, studies. As noted earlier, a micro-
scopic study for Go-model-like interactions indeed shows a
first-order-like transition to the native state;30 however, such
a transition is the first-order one only for 3-dimensional Go
heteropolymers. In the lower-dimensional cased e 2, even
an extensive gap does not guarantee a cooperative behaviors
because the set of partly folded states is organized in a
2-dimensional heteropolymer differently than it is in a
3-dimensional heteropolymer.21 This fact also calls for
caution in interpreting results of folding simulations of square
lattice models.

Essentially phenomenological models such as that in ref
6 postulate some “ends” (e.g. cooperative transitions).
However, they do not mention “means”, namely physical
evolutionary mechanisms by which extensive gaps, giving
rise to such transitions, can be achievedby sequence selection
in evolution, even in principle. It is this conceptual difficulty
of phenomenological “minimal frustration” and Go models
that caused some skepticism about them and, by implication,
about the concept of anextensiVe energy gap at the time.
(While the key role of the energy gap in providing protein-
like stability to the native state was clearly stated in ref 25,
the analysis in ref 25 did not require extensivity of the gap.)
This fundamental issue was resolved in our work in 1993-
1994,27,36-38 where we showed that extensive gaps can be
achieved bysequence selectionalone within an entirely
physical microscopic model with a physically realistic
Hamiltonian (see below for more details). The theoretical
development27,36,38reconciled microscopic evolutionary mod-
els with the phenomenological approach of Go and co-
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workers and Wolynes and co-workers, providing finally a
coherent view on necessary and sufficient evolutionary
requirements for polypeptide sequences to be protein-like.

On a more technical note, in phenomenological models,31,39

the gap is defined as the energy difference between the native
state and theaVerageenergy of the misfolded, “liquidlike”
conformations,∆E in eq 2 of ref 31. This definition differs
from those in refs 25, 27, 40, and 41, where the gap is defined
as the energy difference between the native state and the
lowest energy misfoldthat is structurally dissimilar to the
native state. While one definition is related to the other by
a simple additive sequence-independent parameter, there is
also a technical difference between the two: The parameter
∆E playing the role of the gap in ref 31 is extensive in protein
length even for random sequences (which can be estimated
if one setsTf ) Tg in eq 2 of ref 31), but according to the
definition of Shakhnovich and co-workers, such an extensive
gap exists only for special evolutionary selected sequences,
while for random sequences it is approximately a fewkT
per molecule and does not grow with molecule size.
However, this difference is purely technical, perhaps even
terminological. In fact, as we noted before, the “Tf/Tg”
criterion of Wolynes and co-workers31 is essentially equiva-
lent to the requirement of extensivity of the gap.

Detailed simulations of simple lattice models showed the
importance of the gap as the main determinant of protein-
like behavior, both thermodynamically and kinetically.33,40,41

In the study of Sali et al.,40 200 random 27-mer sequences
were generated and their folding was simulated using Monte
Carlo dynamics. The advantage of the 27-mer lattice model
is that all its compact conformations can be enumerated42,43

so that the ground (native) state can be known exactly if the
energy function is such that native states are guaranteed to
be compact. In addition, the availability of an exhaustive
conformational set made it possible to rigorously estimate
the energy gap. It was shown that sequences with large gaps
are the ones that exhibited fast folding to the native
conformation.40 This result was further confirmed and
extended in a subsequent study33 where different folding
criteria were compared. The findings in ref 40 showed that
a large gap isnecessaryto provide fast folding. However,
this study was limited to one chain length (27 residues), and
it could not address the question of whether the gap should
be extensive or not.

Perhaps the most conclusive demonstration that the energy
gap is necessary and sufficient for cooperative and fast
folding was obtained in computer experiments where the
stochastic sequence design procedure generated sequences
with large gaps and it was shown that such sequences do
indeed fold cooperatively and fast to their native conforma-
tions37,44 (see section 3).

The microscopic analytical replica theory of heteropoly-
mers witheVolutionary selectedsequences was developed
in refs 38, 45, and 46. The key idea is that now averaging
of free energy in eq 2.3 should be over the ensemble of
evolutionary selected sequences. Technically that means that
the probability of finding a sequenceP in eq 2.3 should now
be properly biased toward the correct sequence ensemble,
namely selected sequences that have a large (and extensive)
energy gap between their native conformation and a collec-
tion of misfolds. A direct, (yet impractical) way to achieve
this is to consider only sequences that fold with a certain
(very low) energyE into their native conformation, i.e.

whereδ is Dirac’s delta function that limits the ensemble to
only sequences that have energyE in their native conforma-
tion, and{r0} represents the set of atomic coordinates of
the native structure for which sequences have been selected.
(Technically eq 2.14 biases sequences to have low energy
in their native state, not large gaps. However, as was shown
in refs 27, 36, and 38 and will be argued later, under certain
conditions, a low native energy translates into a large gap.)
Averaging free energy with a biased sequence ensemble eq
2.14 corresponds to consideration of only special sequences
that are selected to fold into their lowest energy structure
with a significant energy gap.

However, practical calculations with sequence ensemble
eq 2.14 are not feasible. One approach based on mean-field
approximation that presentsP({σ}) as a product of single-
site residue probabilities was proposed by Saven47 in the
context of combinatorial protein design.

Another approach is to use a canonical distribution instead
of eq 2.14. It was pointed out in refs 27 and 36 that the
sequence probability distribution given by eq 2.14 is
equivalent to the microcanonical sequence space ensemble
in statistical mechanics. As usual, it is more convenient to
deal with a canonical ensemble, i.e., instead of a rigid
requirement that all sequences have a given (low) energyE
in their native conformation (eq 2.14), which imposes a less
restrictive and perhaps more biologically realistic requirement
that the ensemble of protein sequences is biased by evolu-
tionary selection toward protein-like sequences, having low
enough energy in the native state, but this bias is not
absolutely restrictive. Such a bias was introduced in refs 27,
36, 38, and 45 in the form

whereTsel is the “selective temperature” that represents the
degree of evolutionary selection on protein sequences (a
lower Tsel corresponds to stronger pressure). An extended
analysis of thermodynamics of designed protein-like se-
quences was carried out by Wilder and Shakhnovich.45 It
differed from the initial analysis of Ramanathan and
Shakhnovich38 and that of Pande et al.46 in that it extended
the consideration beyond pure mean-field analysis by taking
into account fluctuations in order parameters (in the one-
loop approximation) as well as the possibility of a two-step
replica symmetry breaking (RSB) in the overlap order
parameter. (RSB corresponds to equilibrium solutions where
the overlap order parameterqRâ depends on the replica
indices R and â. The physical meaning of RSB is that
different “replicas”sconformations of the chain in deep
energy minimashave different structural overlaps, which in
turn reports on the complex structure of the energy landscape.
The specific nature of RSB is an indicator of the structure
of the energy landscape in the model.48) It was established
in ref 45 that one-step RSB is still a stable solution for the

PE({σi}) ) δ(E - ∑
i<j

B(σi,σj) U(ri
0 - rj

0)) (2.14)

PTsel
({σi}) ) exp(- H({σ},{r0})

Tsel
) )

exp(- ∑
i<j

B(σi,σj) U(ri
0 - rj

0)
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problem, and a new phase diagram for the model was
presented. It differs slightly from the original one proposed
in 199438 due to a more accurate approximation; however,
qualitatively, it is similar to the earlier version38 and also
predicts a cooperative, first-order phase transition between
the native and disordered states for designed sequences and
the absence of a cooperative transition for random sequences.

The phase diagram of protein-like heteropolymers in
variables (Tsel, T) is shown in Figure 1.

A major insight from evolutionary heteropolymer theory
is that random sequences can be stable at low enough
temperature in their lowest energy (“native”) conformations.
However, the transition to such “folded” states appears to
be gradual, with numerous intermediate metastable states.5

This prediction from theory was tested by Goldberg and co-
workers in an elegant experimental study.49 These authors
isolated a 101-residue fragment beta-2-subunit ofEscherichia
coli tryptophan synthase (ECTS). In the intact ECTS, the
fragment makes most of its interactions with the rest of the
protein so that the isolated fragment can be viewed as an
essentially random sequence. The fragment forms a compact
conformation with some secondary structure but does not
fold cooperatively, as revealed by the calorimetric van’t Hoff
criterion.50

2.3. How Many Amino Acid Types Are Needed To
Design a Protein?

Computer experiments37 and theory38,45,46showed that it
is indeed possible to select sequences that exhibit protein-
like behavior with large gaps. However, not every het-
eropolymer is amenable to such evolutionary selection.
Specifically, there should be proper diversity of interactions
to make it possible to find a sequence that has its native
energy separated by a large gap from the decoys. Diversity
of interactions is achieved when the amino acid alphabet is
diverse. In particular, it was pointed out in refs 37 and 45
that, under certain conditions, no sequences may exist for
proteins having only two types of amino acids (i.e. hydro-

phobic and polar, as in the HP model51) that could stabilize
unique native conformations. The inadequacy of two-letter
heteropolymers was also noted in ref 39 and directly
confirmed in a lattice model study.52 A mean-field analysis
based on application of the random energy model53 showed
that two factors play a role in determining whether a
polypeptide chain can have an energy gap. One is the
diversity of interactions that is determined by the diversity
of the amino acid alphabet, i.e., the number of amino acid
types. Another factor is chain flexibility, reflected in the total
number of its conformations. In particular, if a polypeptide
chain has the total number of residuesN and the number of
conformations per residue isγ, then the total number of
conformations is

The analysis presented in ref 53 showed that the necessary
condition for protein-like sequences (that have a large gap)
to exist should be

where

is the “effective” number of amino acid types (corrected from
the naive number 20 to account for possible disparities in
their compositionspi). The effective estimated maximal gap
for the best designed sequences is

whereB is the standard deviation of the interaction energies
between amino acids. The importance of the chain flexibility
parameterγ can be easily understood because greater
γ-values give rise to a greater size of the conformational
space of misfolds (or “decoys”) (see eq 2.16). In turn, a
greater number of decoys makes it more probable that some
of them have low enough energy to close the gap between
decoys and the native state. This analysis suggests that
making the polypeptide more rigid by introducing local
interactions (the most prominent of them are of course
hydrogen bonds) leads to improved energy gaps and, as a
result, improved ability to fold. This conclusion is in
agreement with results of recent all-atom simulations54 which
showed that neglect of hydrogen bonding potential results
in deterioration of the discriminating ability of the all-atom
two-body potential (see section 5 for more details).

Kaya and Chan55 tested many predictions of theory in a
careful and comprehensive computer experiment. They
studied the cooperativity of the folding transition in several
popular lattice models: the 2-letter 27-mer model of
Shakhnovich and Gutin,27 the 3-letter 27-mer model of Socci
et al.,56 the 20-letter 36-mer model of Gutin et al.,57 a 48-
mer Go model,58 a “solvation” 2-letter HP model,59 and a
short 20-letter model with side chains of Thirumalai et al.60

Kaya and Chan applied a rigorous experimental van’t Hoff
criterion to determine the cooperativity of the folding
transitions in these models.50 In complete harmony with
theoretical predictions, they found that the Go model (an
essentially infinite number of letters) and the 20-letter models

Figure 1. Phase diagram for evolutionary selected protein-like
heteropolymers. This phase diagram was derived in ref 45 for
heteropolymers consisting of two types of residuesshydrophobic
and polar.. High selective temperature corresponds to random
sequences while lower selective temperature corresponds to protein-
like evolutionary selected sequences. The transition from native
state to disordered compact state is cooperative first-order-like and
gradual for evolutionary selected sequences (dashed line) and second
order for random sequences (solid line nearTc). (Reprinted with
permission from ref 45. Copyright 2000 American Institute of
Physics.)
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are the most cooperative while short chain models as well
as 2- and 3-letter models are much less cooperative,
consistent with theoretical predictions.37 Further, Kaya and
Chan found that 2-dimensional lattice model proteins do not
fold cooperatively. Again, this finding is consistent with
heteropolymer theory,7 which predicts that 2- and 3-dimen-
sional heteropolymers exhibit very different behavior (see
above and ref 20).

2.4. How Important Is Native Structure for Protein
Cooperativity? The Structural Determinant of
“Downhill Folding”

So far, we focused on the sequence selection aspect of
protein cooperativity. However, equally important is a
structural aspect of the problemshow does folding cooper-
ativity depend on the native structure of a protein? This
question was first addressed by Go and Taketomi, who
studied a simple 2-dimensional lattice model with Go-type
interactions.61 These authors studied the relative role of short-
and long-range (along the sequence) interactions and con-
cluded that long-range interactions are essential for cooper-
ativity while short-range interactions accelerate the folding
and unfolding transitions. The implication from this study
is that folding into structures with less long-range interactions
will be less cooperative. Govindarajan and Goldstein62

conducted a detailed study of the effect of native conforma-
tion on sequence optimizability, i.e., the existence of
sequences with large enough gaps. Consistent with Go and
Taketomi, they found that prevalence of local interactions
in a native structure makes it more difficult to find optimized
sequences for them. In their analysis, they used theTf/Tg

criterion and found that its value deteriorates for sequences
that fold into structures with more local contacts. Based on
the assumption thatTf/Tg serves as a predictor of how fast a
sequence can fold, they concluded that folding will be slow
into structures with many local contacts. Abkevich et al.63

addressed this question by designing sequences for three
native structures of lattice 36-mer. One structure was chosen
to have predominantly local contacts, another structure was
selected to have almost exclusively nonlocal contacts, and
the third structure was picked randomly and had both
nonlocal and local contacts in some average proportion.
Consistent with earlier conclusions, the cooperativity dra-
matically depended on the proportion of local conacts. In
fact, the structure with only local contacts did not fold
cooperatively at all despite sequence design aimed at
providing large gaps! Rather, it folded in a continuous
manner akin to the second-order rather than to the first-order
transition. The structure with predominantly nonlocal contacts
was very cooperative. The analysis of folding kinetics for
these three structures revealed a more complex picture than
suggested by both Taketomi and Go and Govindarajan and
Goldstein. It turned out that, at respective temperatures when
folding is fastest, the sequence whose native structure had
the mostly local contacts folded faster than the sequences
that had their native states in the other two structures,
consistent with the Taketomi and Go prediction. However,
at the condition when the native state is stable, folding was
fastest into the structure with the most nonlocal contactss
more in line with the Govindarajan and Goldstein view. This
is perhaps not surprising. The cooperative transition occurs
in a narrow temperature range so that, even slightly below
Tf, the protein may already be stable. When the transition is
not cooperative, it requires much lower temperature to

stabilize the protein, resulting, not surprisingly, in slow
folding at the condition when the native state is stable.

The interest in the criteria of protein cooperativity was
revived recently when Munoz and co-workers found a
protein, BBL, that exhibited thermodynamically noncoopera-
tive behavior.64 Based on this observation, the authors posited
that this protein should also exhibit noncooperative kinetics,
i.e., downhill folding. Downhill folding was also observed
for other, mostly redesigned, proteins.65,66Most recently, Zuo
and coauthors67 analyzed the possible structural determinants
of the folding cooperativity of several proteins. They found
that the fraction of nonlocal contacts is an excellent predictor
of cooperativity or lack thereof: proteins with a fraction of
nonlocal contacts below a certain threshold all exhibited
noncooperative, or downhill, folding. This analysis fully
confirms earlier theoretical predictions.61,63

3. Protein Design sPractical and Evolutionary
Aspects

3.1. Stochastic Algorithms To Design Sequences
with Large Energy Gaps

The idea to select folding (large gap) sequences from the
canonical ensemble (eq 2.8) immediately suggested apracti-
cal approach to find such sequences. Indeed, any stochastic
search in sequence space that converges to a canonical
distribution will do the job. Such a method was first
developed in refs 27 and 36sMonte Carlo in sequence space.
One issue that needs to be addressed in such a search is that
it can converge to homopolymeric sequences composed of
residues that attract each other most strongly. Indeed, such
a solution will certainly lead to low energy in the native
conformation, but it is flawed. The reason is that, in fact,
the energy gap between the native state and the set of
misfolds needs to be maximized, not just the energy of the
native state. The simplest (albeit not necessarily most optimal
or most realistic, from an evolutionary standpoint) solution
to that problem was proposed in ref 27: to run a stochastic
Monte Carlo search in sequence space to minimize the energy
of the native stateunder the constraint of constant amino
acid composition. This idea appeared successful in preventing
the convergence to homopolymer sequences providing
sequences with optimized energy gaps. The reason such an
approach is successful was explained in ref 27. The low
energy boundary of conformations in the misfolded set
depends primarily on amino acid composition. At the same
time, the energy of the native conformation for which the
search in sequence space is carried out depends on sequence.
Therefore, minimization of the energy of the native confor-
mation while keeping the amino acid composition constant
provided a simple way to maximize the energy gap.

This approach to sequence design, while being conceptu-
ally simplest, is perhaps not the optimal because it, by
construction, is not able to also find an optimal amino acid
composition. Besides that, there is no condition of constant
amino acid composition for natural proteins: compositions
vary between organisms and between proteins in genomes.68

Several improvements were suggested. First, as a proxy of
energy gap, theZ-score in the native conformation69

Z({σ}) )
ENAT({σ}) - Eav({σ})

DE({σ})
(3.1)
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can be optimized in sequence space. HereENAT({σ}) is the
energy of sequence{σ} in the native (“target”) conformation,
and Eav({σ}) and DE({σ}) are the average energy and its
dispersion (over allM conformations) of sequence{σ}:

Apparently, homopolymeric solutions do not optimizeZ-
score; rather,Z ) 0 for homopolymers because in this case
ENAT ) Eav. Z-score optimization of sequences was first
developed in ref 63 for lattice model proteins and was further
extended to real proteins in refs 70 and 71. In particular,
Takada and co-workers designed novel sequences for a
known protein having a three-helix bundle structure71 using
the Z-score optimization as well as (for comparison) the
energy minimization approach with given amino acid
compositions. The authors used a simplified protein repre-
sentation where amino acids were represented as spheres.
Several of the designed sequences were synthesized, and one
of them exhibited protein-like properties: significant helical
content, a cooperative unfolding transition (melting), and
significant chemical shifts as judged by 1-dimensional1H
NMR. However, the structure of this designed protein was
not determined, so it is hard to say whether this design was
fully successful.

Another approach to design optimal sequences was
proposed in ref 72, where sequences{σ} that maximize the
Boltzmann probability to be in the native state at a given
temperatureT

are sought.
Exact evaluation of the sum over all conformations in the

partition function in the denominator of eq 3.3 is not feasible.
Instead, an approximation based on cumulant expansion of
the partition function was used in ref 72. This approach opens
the possibility to design proteins with selected thermal
propertiessfrom mesophilic to hypethermophilic ones. It also
accounts for the free energy difference between folded and
unfolded states (the latter is accounted for via estimate of
the partition function).

Further developments of stochastic Monte Carlo sequence
design procedures followed two tracks. First, it was applied
to design of model lattice proteins in ref 37 and to real
proteins (with extension to an all-atom model of a protein
and significant development of force fields to realistically
represent protein energetics) by Kuhlman and Baker73-75 and
by Mayo and co-workers.76 DeGrado and co-workers77 used
the combinatorial design approach of Saven. In particular,
Kuhlman and Baker were able to design a sequence that folds
into a new fold.75 In contrast to the work of Takada,71 they
used an all-atom representation of proteins, i.e., accounting
for side-chain packing. Folding to the target structure was
confirmed by crystallographic analysis. This remarkable

result provides fundamental experimental support to the main
conclusion from statistical-mechanical protein folding theory
that low energy in the native state (i.e. a large energy gap)
is necessary and sufficient for a sequence to be protein-like
and foldable. Earlier, this key conclusion from theory was
proven in simulations37 where sequences were designed to
have a large energy gap for an arbitrarily chosen target and
were shown to fold into that target (see Figure 2). The
Kuhlman and Baker work75 is an experimental counterpart
of an earlier computer experiment37 shown in Figure 2.

3.2. Using Protein Design To Understand Protein
Evolution: Evolutionary Dynamics of Protein
Sequences and Designability of Protein
Structures

The second direction of development and application of
stochastic sequence selection methods is to consider them
as simple models of natural evolution. Along these lines,
two important sets of results were obtained. First, one can
seek better understanding of evolutionary processes that result
in formation of fold families, i.e., collections of sequences
of various degree of homology that fold into a particular
structure. Sequence family expansion under structural con-
straints was explored in significant theoretical detail by
Dokholyan and Shakhnovich.70 In this work, the authors
developed theZ-score design method for real protein
structures and used it to design sequences to fold into several
common folds. They followed the temporal progression of
the sequence design and sequence families that emerged. The
authors found that protein sequence evolution could be
understood in terms of a “free energy landscape” in sequence
space. Local exploration of sequence-structure pockets
(which correspond to local minima on the evolutionary
landscape, see Figure 3) occurs on some time scale and
represents the diffusion of orthologs and paralogs with
respect to one another within this pocket. The pocket itself
is defined by a key set of residues that are constrained to
certain amino acids in order for that set of sequences to
support folding into a given structure, a fact that results in
the conservation of specific amino acids or amino acid types
at certain positions within the sequence family.70 On a
separate evolutionary time scale, some sequences cross
“barriers” in this landscape and seed new local minima.
These local minima may be unrelated from the standpoint
of sequence comparison. The new sequence pocket may be
subsequently explored on a shorter time scale with certain
residues constrained. Sometimes, these transitions result in
structures that are similar to the original structure. In this
case, comparison of the two sequence pockets demonstrates
that theidentity of the conserved residues differs between
the two but the structural similarity is maintained because
the relativepositionsof these conserved residues do not
change. In other cases, the structural similarity is not
maintained and a brand new fold is discovered. Dokholyan
and Shakhnovich explored a model of protein evolution
involving several protein structures and found that those
residues with low substitution rates in their model tended to
have low “conservatism of conservatism” (CoC) entro-
pies.70,78,79The CoC quantity, first introduced in ref 78 and
further studied in ref 79, considers families of sequences that
belong to the same fold and identifies positions that are
highly conserved within families (i.e. have low sequence
variance) and tend to be highly and universally conserved
in the set of families of the fold (i.e. positions that have low
sequence entropy in many families within the fold).70,79

Eav )

∑
conf
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A second direction where an analogy between protein
design and sequence/structure evolution can be explored is
to provide an estimate of the number of sequences that can
fold into a given protein structure.36,53 The goal of this
analysis is to address an important problem in evolutionary
structural biology as to why some protein folds are more
abundant than others. A proper sampling in sequence space
makes it possible to estimate the number of sequences that
fold into a given structure, i.e., its designability.53,80-82 Such
calculations were carried out for several proteins in ref 53
and for many more (using a somewhat different sequence
sampling strategy and analysis) in ref 83. It was found for
simple models81,84 and confirmed for real proteins83 that
different protein structures may have vastly different design-
abilities. Then the question is what is a structural determinant
of protein designability? The initial insight came from the
work of Finkelstein and coauthors, who used the random
energy model to estimate designability.80 Within this ap-
proximation, the overall compactness of a structure (total
number of contacts between amino acids) determines the
designability of a protein. Subsequently, Wolynes addressed
this question and reached a similar conclusion.82 In his study,
Wolynes used the approach of Shakhnovich and Gutin36 to
statistical mechanics in sequence space. He obtained a
cumulant expansion of free energy in sequence space up to

the second order and also found that designability in this
approximation is determined by the compactness of proteins.
Subsequent analysis53,85showed that second-order truncation
of the free energy expansion is equivalent to the sequence-
space random energy model of Finkelstein. However, such
an approximation may be limited. For example, it predicts
that all maximally compact lattice conformations are equally
designablesin direct contradiction with the findings of Li
and co-workers81 and Goldstein and co-workers.86 A more
detailed theory developed recently by England and Shakh-
novich,85 which allowed us to obtain, under certain ap-
proximations, a closed form expression for free energy and
entropy in sequence space, suggested that a particular
property of a protein structure, namely traces of higher
powers of its contact matrix (CM) (or, equivalently,λmax,
the maximum eigenvalue of its contact matrix), may serve
as a reliable predictor of protein designability. The CM of a
protein ofN amino acids is anN × N matrix whose (m, n)
element is 0 if amino acidsm andn are not in contact and
1 otherwise.

The physical explanation of the correlation between traces
of the powers of the CM and sequence entropy (i.e.
designability) follows from the fact that these traces of
powers of the CM reflect topological properties of the
network of contacts within the structure.87 For example, the

Figure 2. Computational experiment showing that sequences designed with a large energy gap fold cooperatively and rapidly into their
native conformations.37 First, a structure is chosen to serve as the target, native conformation. Then sequences are designed (using Monte
Carlo search in sequence space with fixed composition) to have a large energy difference (gap) between the native conformation and the
set of structurally distinct misfolds. One such sequence is memorized. Monte Carlo folding simulations for this sequence start from an
arbitrary random coil conformation and quickly and cooperatively converge to the target conformation for which the sequence was designed.
The designed sequence has the target conformation as its apparent global energy minimum, as no conformations with energy lower than
that of the target (native) conformation are found.
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trace of CM2 simply gives the total number of contacts (or,
equivalently, the total number of two-step, self-returning
walks) and the trace of CM4 gives the number of length-4
closed loops in the network of contacts in the native structure
of a protein and so on. One may also note that certain closed
loops of contacts allow for optimal placement of amino acids
that interact very favorably. For example, if four amino acids
that strongly attract each other are folded into an architecture
where they all interact favorably (e.g. when placed on four
corners of a square, see Figure 4), this arrangement provides
a greater contribution to the stability of the overall structure
than configurations in which the same four amino acids are
arranged linearly or configurations in cases where the last
contact is out of the contact range (Figure 4).

Such optimal placement of a sequence fragment of several
strongly interacting amino acids allows for more sequences
to be stable in the structure by relaxing energy constraints
for the rest of the sequence. Thus, the structures that provide
certain features, such as availability of long closed loops of
interactions and higher density of contacts per residue, are
expected to be able to accommodate a wider variety of
different sequences. This argument is similar in spirit to the
derivation of the Boltzmann distribution in statistical me-
chanics88 and is similar to the justification for the “Boltzmann
device” used in the derivation of knowledge-based poten-
tials80,89 for the study of protein folding and prediction of
ligand binding energies.

The England-Shakhnovich structural determinant of de-
signability,λmax, was tested using standard lattice model 27-
mers whose maximally compact conformations could be
exhaustively enumerated. The structures with highest and
lowest maximum eigenvalues of their contact matrixes can
be found, and their designabilities can be then directly
compared by calculatingS(E), which is (log) of the number
of sequences that can fold into a given structure with energy
E. This quantity can be calculated from Monte Carlo
sampling in sequence space using the analogy between
statistics of sequences and statistical mechanics of a canonical
ensemble (eq 2.15).53 The comparison shown in Figure 5
indeed indicates that structures that have a greater maximal
eigenvalue of their contact matrixes (or, similarly, higher
traces of powers of contact matrixes) are indeed more
designable: more sequences exist that can fold into them
with low energy.

The analysis of sequence entropy curves presented in
Figure 5 reveals another interesting featuresthat it is easier
to find thermostable sequences for more designable structures
than for less designable ones. Indeed, sequences that have
exceptionally low energy in their native states can be found
only for more designable structuressthe blue curve in Figure
5 ends at a higher energy than the red curve. This observation
suggests a possible direct implication for structural genom-
ics: that proteomes from more thermostable organisms will
be statistically enriched with more designable structures. The
comparative analysis of mesophilic and thermophilic pro-
teomes from various sources confirmed this conjecture.90,91

This finding is very important, as it provides a direct
connection between protein folding, structural genomics
(proteomics), and evolution of thermophilic adaptation.

Further, a connection between protein evolution and
designability is revealed in comparison between gene families
of different sizes. The idea that designability may affect the
size of gene families (so that more designable proteins can
accommodate more sequences, i.e., have gene families of
greater size) was proposed by several researchers.80,81,84

However, in the absence of a structural determinant of protein

Figure 3. Schematic representation of the evolutionary processes
that result in conservation patterns of amino acids. For a given
family of folds, e.g. immunoglobulin (Ig) folds in this diagram,
there are several alternative minima (3) in the hypothetical free
energy landscape in the sequence space as a function of the
“evolutionary” reaction coordinate (e.g. time). Each of these minima
are formed by mutations in protein sequences at some typical time
scales,τ0, that do not alter the protein’s thermodynamically and/or
kinetically important sites, forming families of homologous proteins.
Transitions from one minimum to another occur at time scalesτ )
τ0 exp(∆G/T), where∆G is the free energy barrier in sequence
space separating one family of homologous proteins from another.
At time scaleτ, mutations occur that would alter several amino
acids at the important sites of the proteins in such a way that the
protein properties are not compromised. At time scaleτ, the family
of analogues is formed. In three minima, we present three families
of homologues (1TEN, 1FNF, and 1CFB), each comprised of six
homologous proteins. We show eight positions in the aligned
proteins: from 18 to 28. It can be observed that at position 4
(marked by blocks) in each of the families presented in the diagram,
amino acids are conserved within each family of homologues but
vary between these families. This position corresponds to position
21 in the Ig fold alignment (to 1TEN) and is conserved. We are
very grateful to Nikolay Dokholyan for preparation of this figure.

Figure 4. Illustration of the physical reasons why and how the
structure of a protein determines its designability. The balls
schematically represent amino acids. Suppose that the interaction
between the “red” amino acid and the “blue” amino acid is favorable
and givesE ) -1. The configuration on the left yields lower
energy,-4, compared with the structure on the right, where the
contribution from interactions between these amino acids is only
-3. Thus, the 4-loop in the left structure contributes more to the
stability of the structure overall, allowing more freedom to select
the remaining part of the sequence to obtain overall stabilization
of the structure, Similar considerations apply to 3-loops, 5-loops,
etc. (Reprinted with permission from ref 87. Copyright 2005 Cold
Spring Harbor Laboratory Press.)
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designability, such proposals were hard to evaluate. Now,
structural determinants of protein designability are better
understood so that a direct test of the hypothesis that
designability affects the size of a gene family could be carried
out.87 A statistically significant correlation between the size
of a gene family and the designability of the protein structures
that it encodes was indeed found.87 However, this correlation
is limited because other factors such as evolutionary history
affect the size of a gene family.92 Indeed, when the factor of
the age of a gene family is taken into account, the correlation
between designability and size of a gene family becomes
more pronounced. Further, it was found that more ancient
proteinssi.e., the ones that are shared by all kingdoms of
lifesare significantly more designable. Furthermore, in a
recent study of thermophilic adaptation, the proteomes of
ancient hyperthermophiles, e.g.P. furiosus, were found to
be much more enriched in designable structures than that of
hyperthermophiles that evolved as mesophiles but later
recolonized hot environments.91 This finding suggests that
evolution progressed toward discovery of less designable
proteins. This result can be explained by the observation that
as evolution progressed in time, search in sequence space
was facilitated simply because evolution had more time to
explore it. The ability to explore sequence space more
thoroughly relaxed restrictions on structures for which viable
sequences could be found. This trend is also consistent with
observations from simulations of evolution in lattice mod-
els.93

4. From Coarse-Grained to All-Atom Studies of
Protein Folding Kinetics

4.1. Discovery of Specific Nucleation in
Simulations and Experiment

Studies of simple models indeed contributed considerably
to our understanding of protein folding by emphasizing its

universal aspects. They helped to focus our thinking on key
common milestones along protein folding pathways such as
transition states and on- and off-pathway intermediates,94-97

seen as ensembles of conformations. Importantly, many of
the experimental studies were directly motivated by specific
predictions and questions raised in theoretical studies. With
regard to folding kinetics, an important theoretical discovery
of a nucleation mechanism via formation of a specific folding
nucleus98 was made using coarse-grainedslatticesmodels.
As defined in ref 98, a nucleus is a minimal folded fragment
that results in inevitable subsequent unidirectional downhill
descent to the native conformation. Such a defined nucleus
was termed “postcritical” in ref 98 to emphasize that no
recrossing back to the unfolded basin occurs after its
formation. A related definition of the folding nucleus as the
defining, common structural feature of all conformations
belonging to the transition state ensemble corresponding to
the “critical” nucleus suggests the probability to fold without
recrossing back to the unfolded basin ispfold ) 1/2, not just
1 as for the postcritical nucleus of Abkevich et al.98 As noted
in the original publication,98 thus defined nuclei are related
to each other. The folding nucleus was found to be specific
in lattice model simulations.98 The specificity of the nucleus
means that a well-defined obligatory small fragment of the
structure needs to be formed in order to guarantee fast decent
to the native state. This conclusion was reached in ref 98
based on the analysis of folding trajectories, i.e., the search
for the invariant minimal set of contacts whose appearance
preceded subsequent fast folding. This way, aputatiVe
nucleus was identified. Then control simulations were run
to make sure that simulations starting from conformations
with a preformed nucleus indeed rapidly descended to the
native state without recrossing to the unfolded basin, i.e.,
that formation of the nucleusguaranteedsubsequent rapid
downhill folding. A modified and extended version of this
approach was introduced later by Du et al. and is now known
aspfold analysis99 (see below).

Independently, Guo and Thirumalai found the nucleation
mechanism in a different, off-lattice model.100,101 These
authors used a 46-mer continuous model having amino acids
of three types that adopts a three-prongedâ-barrel structure.
Guo and Thirumalai found that in several of their Langevin
dynamics simulation runs they “observed rapid formation
of native hydrophobic contacts that is immediately followed
by folding to the native state”.100 The authors found that
“nucleation sites” are found near the flexible loop regions.
They also note that such a mechanism is observed only in
fractions of runs: roughly 40% of molecules reached their
native state through a well-defined marginally stable inter-
mediate.

Dokholyan et al. also studied nucleation in an off-lattice
model using dicontinuous molecular dynamics simulations
(see below) and a dynamic criterion (akin topfold) to
determine the transition state ensemble (TSE).102 These
authors observed a specific nucleus for a generic protein
model. Subsequently, a similar method was applied to
determine the TSE in several SH3 domains where also the
nucleation scenario was observed103 and the location of
nucleating residues appeared to be in good agreement with
experimentalφ-values (see below discussion ofφ-values).

In experimental studies, Fersht and co-workers pioneered
a protein engineering approach to determine folding nuclei
defined in a similar waysas the residues most involved in
folding transition states. They arrived, for two-state proteins

Figure 5. (a) Two lattice structuresshaving the highest and lowest
predicted (by traces of their contact matrices) designabilitiessand
(b) counting of sequences that can fold into these structures with a
given energy.∆S is the entropy (log) of the number of sequences
that fold into a given structure with a given energy counted from
fully unconstrained statistics (atE ) 0). Blue points describe the
entropy of sequences designed for the low trace structure, and red
points are for the high trace structure. The inset shows how many
sequences can be stable (i.e. have high Boltzmann probability) in
less and more designable structures, respectively.
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such as chymotrypsin inhibitor 2, at a similar conclusion
about specific nucleation.104 Fersht and co-workers character-
ized three key residues involved in the specific nucleus of
CI2, and the same residues were independently predicted as
belonging to the nucleus in the theoretical analysis in ref
105. Fersht analyzed the results from protein engineering104

and lattice simulations98 and concluded that a nucleation
mechanism similar to the one found in lattice simulations98

is a very plausible universal mechanism of folding for small
two-state proteins. He coined the term “nucleation-
condensation” to emphasize the fact that the nucleus consists
of residues that are uniformly distributed in sequence; hence,
bringing them together causes chain condensation. This is
in contrast with the earlier proposal by Wetlaufer, who
envisioned a nucleation mechanism based on condensation
of a few residues that are nearest neighbors along the chain.106

4.2. Chemical Reaction or Phase Transition?
“Energy Landscapes” Paradigm and Its
Alternatives

Attempts to understand protein folding kinetics on theo-
retical grounds are deeply rooted in analogies with other,
better studied systems. Of these, the two most powerful and
conceptually very different ones are the analogy with
chemical, or, perhaps, biochemical reactions56,107-109 and the
analogy with a phase transition.98,110The major paradigm in
thinking about chemical reactions is that of a low-
dimensional energy landscape. The dynamics on an energy
landscape for a simple molecule(s) can be either ballistic or
a diffusive motion along one or very few reaction coordi-
nates. Reaction coordinateX in simple chemical kinetics is
defined as one or very few coordinates (that is a function of
all Cartesian coordinates that characterize the system) such
that the derivative of the energy functionE(X) (or, for many
degrees of freedom, the free energy functionF(X)) gives the
direction of the reaction and the maximum corresponds to
the transition state. The concept of reaction coordinate is
highly nontrivial, as it provides the relationship between
equilibrium properties such asE(X) or F(X) and kinetics.
The transition state is a kinetic separatrix that divides the
direction of the reaction from going toward products to going
toward reactants. Theoretical treatment of simple chemical
reactions along well-defined reaction coordinates within the
framework of the transition state theory or, for diffusive
dynamics, Kramers theory had been very successful. There-
fore, the appeal to pursue the chemical reaction analogy for
protein folding is in the availability of a well developed
theoretical formalism that can immediately be applied to the
problem at hand. However, the success of theoretical
treatment of chemical reactions in simple molecules hinges
heavily on the mere existence and proper selection of reaction
coordinates. While this problem is relatively straightforward
for simple molecules, it becomes formidable for complex
multiparticle systems such as proteins. The obvious difficulty
here is that, unlike simple molecules, proteins are systems
with many degrees of freedom. The implication of that is
twofold. First, the ‘‘raw” energy landscape view is not
helpful anymore because now such a landscape is extremely
multidimensional and is not conducive to meaningful in-
sights. The possibility of a meaningful low-dimensional
projection of the energy landscape is contingent on the
existence of an identifiable reaction coordinatesan extremely
nontrivial and yet unresolved problem (see below). Second,
unlike simple chemical reactions, entropic contributions are

comparable to energetic ones in proteins so that energy alone
does not determine the direction or path of the “folding
reaction”.

An attempt to overcome this difficulty has been in pursuing
the idea of dimensional reduction, i.e., projection via
sampling on a few effective coordinates and analyzing the
free energy landscape in such a reduced space. In one of the
first attempts along these lines, Shakhnovich and Finkel-
stein35,111 (SF) introduced a simple “reaction coordinate”s
the volume of the whole moleculesand developed an
analytical model for the free energy functionF(V) under a
set of conditions such as assumption of affine deformation
of the molecule. The SF theory took into account such factors
as side-chain entropy and solvation in the discrete water
molecule representation. The maximum in theF(V) profile
curve was identified by SF35 as the transition state. It was
noted that the folding barrier is entropic from unfolded to
folded states and energetic as seen from the folded state and
that the physical nature of the barrier is in the partial fixation
of the side chain uncompensated by a proper decrease of
energy and desolvation. Subsequent studies addressed the
issue of desolvation of the protein core upon folding in more
detail in simulations.112,113 This Shakhnovich-Finkelstein
theory35 was viewed at that time as describing a first-order
like phase transition from the molten globule to the native
state which was perceived by us at that time (with available
experimental data at hand)114 as the main cooperative
transition upon protein folding. A subsequent study by
Boczko and Brooks115 used the same reaction coordinates
total volume of the moleculesbut applied sampling and a
histogram technique with conformational clustering to de-
termine the free energy profileF(V) and the putative
transition state for a small three-helix bundle.

The SF reaction coordinatesthe volume of the molecules
is limited in its ability to identify the actual folding
transitionsformation and thermodynamic dominance of a
unique backbone conformation. To this end, other reaction
coordinates (order parameters) were proposed. Bryngelson
and Wolynes usedFsthe fraction of amino acids in their
native conformationsas an order parameter to measure the
degree of folding.6 Motivated by the analytical theory of
heteropolymers,5 Shakhnovich and Karplus (SK) introduced
in a series of papers41,116two order parameters as candidate
reaction coordinates. One is the total number ofanycontacts
between amino acidssa parameter similar to the total volume
of the molecule. It reports on the overall compaction of the
molecule regardless of whether it is folding to the native
state or just a collapse to any of the misfolded compact
conformations. Another, much more specific and important,
reaction coordinate introduced by SK isQ, which is the
fraction ofnatiVecontacts in a conformation. This parameter
is defined as

whereNnative is the number of contacts in a conformation
that are also present in the native state, andNtotal is the total
number of contacts in the native state. At present, the SK
reaction coordinateQ appears standard in most publications
using the “chemical reaction” protein folding analogy.3,56,117,118

The “free energy landscape” forQ, i.e., F(Q), was first
obtained for the lattice model via thermodynamic sampling
by Sali et al.41 These authors introduced a version of the

Q )
Nnative

Ntotal
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histogram method that provided the density of states as a
function of energyE andQ from equilibrium sampling. Sali
et al. derived the density of states for the protein model based
on a straightforward observation that the native state in this
model is unique, i.e., that the density of states at the native
energy is strictly 1. Sali et al. also obtained the thermally
averaged energy as a function ofQ and the entropy as a
function of Q. They identified conformations atQ ) Q*
whereF(Q*) is a maximum at transition states and estimated
their number from the same histogram technique. A gener-
alization of this approach to more than one order parameter
was proposed by Dinner and coauthors.119

The paper by Sali et al.41 caused some debate in the
literature (see critique and response to it in ref 120). The
authors of a subsequent publication56 concurred with the
criticism of Sali et al.41 offered by Chan.52 Nevertheless, they
adopted many of the approaches first introduced by Sali et
al. (the order parameterQ, the histogram approach toQ
sampling), and in their Figure 5, they obtainedF(Q), E(Q),
and S(Q) plots for a similar (but not identical) lattice 27-
mer model that are virtually indistinguishable from those
presented in Figure 4 of Sali et al.41 Both Sali et al. and
Socci et al. found, not surprisingly, thatF(Q), S(Q), andE(Q)
plots are very temperature dependent.F(Q) is a two-minima
function corresponding to native and unfolded states and
cooperative barrier crossing between them at some temper-
ature.E(Q) is a smooth monotonic function at high temper-
ature and is less monotonic with an additional pronounced
minimum at lowQ corresponding to a populated low-energy
misfolded state at low temperature. Further, Socci et al.
consideredQ as a reaction coordinate for the Kramers
equation formalism for theF(Q) profile to study the kinetics
for this model. The Kramers-equation-based approach was
further developed in ref 117 and reviewed in refs 3 and 118.

An alternative kinetic analogy is that of a phase transition.
Since folding is a cooperative process akin to a first-order
phase transition, our understanding and intuition about
kinetics of phase transitions (with the caveat that an
intrinsically small system is considered) could provide some
guidance into the folding kinetic mechanism. This analogy
was recognized and exploited by Abkevich et al.98 in defining
the folding nucleus as aminimal fragment of a new phase
(folded state) that inevitably (i.e. without recrossing back)
converts into the folded state. Thinking along these lines
helped researchers to focus on the important question of
whether the folding nucleus is specificsi.e., whether this
minimal fragment of the new phase is the same or similar
in all folding events or is random and varies from folding
event to folding event (but its size may need to exceed some
critical value). As pointed out earlier, kinetic analysis carried
out in ref 98 and many subsequentkinetic studies99,102 of
the folding transition supported the specific nucleus view,
as did many experiments. The phase transition view was
further discussed by Pande and co-workers.110 Finkelstein
and co-workers121-123 used the phase transition view to
analyze the dependence of folding kinetics on length and
temperature. Putting the analysis of the folding reaction
firmly on the ground of established facts and theories about
first-order phase transitions, these authors further demystified
protein folding cast in terms of the Levinthal paradox.

While the chemical reaction analogy organically focuses
on the transition states for the folding reaction, the key in
the phase transition analogy is also the transition state, but
with its emphasis on entropy, it focuses on the TSE, i.e., the

ensemble of conformations that is defined dynamically: as
having probabilitypfold ) 1/2 to fold and1/2 to unfold.99 The
advantage of the “phase transition” analogy is that it gets
physics right; that is, from the beginning it recognizes the
crucial role of entropy, along with energy, in determining
the kinetics mechanism. The difficulty is that there is no
universal theory of kinetics of first-order phase transitions
and many aspects of it are very system-dependent so that
exploiting this analogy does not bring us automatically to a
satisfactory theory of folding kinetics.

Which analogyschemical reaction or phase transitions
is more helpful? While the answer to this question may seem
to be subjective, reflective of an individual’s scientific
background (the chemical reaction analogy is familiar to
chemists and biochemists while the phase transition analogy
is more natural to physicists), there is a significant difference
between the two in terms of the predictions that they make.

First, the chemical reaction analysis using the SK order
parameterQ as a global reaction coordinate predicts that
barriers for protein folding are proportional to chain length
N so that folding time scales with chain length as exp(RN).117

The nucleation mechanism developed within the phase
transition analogy predicts folding time to scale as exp(RN2/3)
at the midpoint of the thermodynamic folding transition.122

A detailed analysis of experimental data carried out by
Finkelstein123,124 at the transition midpoints and Go model
simulations by Takada125 definitely support the exp(RN2/3)
scaling (a virtually indistinguishable exp(RN1/2) scaling was
proposed by Thirumalai126,127). At the conditions when the
native state is stable, the nucleation mechanism would predict
that the folding barrier is entropic due to the loop closure
entropy lost upon formation of a specific nucleus,128,129which
implies much slower scaling of the folding time with chain
length, as a power lawNλ, which was indeed observed in
simulations128 and is also not inconsistent with experiment.
Thus, we see that the straightforward chemical reaction
approach based onQ as a reaction coordinate fails to predict
correct and physically meaningful chain length scaling of
the protein folding time. Why? To understand that, let us
consider a simpler problem: condensation of vapor into
liquid. One can consider a natural global order parameters
reaction coordinateswhich is a bulk densityF. The “free
energy landscape”F(F) will feature two minima (liquid and
vapor) with the maximum at someF ) F* reflective of the
first-order character of the condensation transition. The
Kramers equation or transition state theory approach will
identify states withF* as the TSE and will predict the rate
of condensation as exp(RN), eventually making any liquid
condensation event impossible for kinetic reasons, in stark
contrast with our everyday experience. The reason for such
a failure of the reaction coordinate approach is clear: While
usingFsthe spatially uniform, average densitysas an order
parameter is fully justified to study the thermodynamics of
the liquid-vapor transition in the mean-field approximation,
it cannot serve even as a basic approximation to study
kinetics.110 We know that transition states for condensation
are qualitatively different from having a uniform intermediate
densityF*. Rather, it is a set of fragments of a new phase
(that appear due to fluctuations)swater dropletssin the sea
of the “old”, vapor phase. However, certain aspects of
transition state theory will be applicable to calculate the rate
of forming of such water droplets.

Another difference between the two predictions following
from the two approaches is in the nature of the transition
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state ensemble. The kinetic approach predicts a specific
nucleus for many modelssfrom lattice models to all-atom
protein simulations.98,102,130In contrast, the reaction coordi-
nate approach, which identifies the TSE as a set of
conformations corresponding to the maximum of theF(Q)
curve obtained from equilibrium sampling, does not find a
specific nucleus for lattice model proteins.131 Why would
two different approaches give different answers to the same
question about the specificity of the nucleus? The issue here
is whether the putative TSE identified in the reaction
coordinate approach is a true TSE, that is, a kinetic separatrix
between folded and unfolded states havingpfold ) 1/2. While
some authors answered affirmatively to that question for
idealized Go models of proteins,108,132there is considerable
evidence that this is not so for more realistic, sequence-based
and all-atom models with transferable potentials.99,133-136 For
further analysis of the relation between geometrical properties
and the location of the kinetic separatrix, see the work of
Brezhkovskii and Szabo.137

In this author’s opinion, the Kramers equation approach
to the kinetics on theF(Q) landscape is very problematic.
The reason for our judgment is that the original Kramers
equation is derived from the underlying dynamics given by
the Langevin equation, where noise is uncorrelated with the
coordinate and when the fluctuation-dissipation theorem
holds. To the best of our knowledge, no such dynamics can
be formulated for theQ coordinate and, therefore, funda-
mental relations such as the one between potential and force
that form the basis of Langevin dynamics and the Kramers
equation do not hold in that case. Therefore, while formally
the Kramers equation can be presented for theF(Q)
“landscape”, its basis for the case at hand is uncertain.

In summary, while the debate of what is the best approach
to theoretically describe protein folding kinetics is ongoing,
it is this author’s opinion that a “physical” approach based
on the nucleation scenario within the phase transition analogy
is more physically sound than a “chemical” approach
motivated by the “energy landscape” picture of simple
chemical reactions. While the latter certainly claimed some
success in quantitatively reproducing folding rates, failure
to get it qualitatively right (e.g. incorrect chain length scaling)
perhaps diminishes the success of quantitative agreements.
However, in all fairness, a fully satisfactory folding kinetics
theory is a matter of the future, not the past, and we can
only guess its form and source of inspiration.

4.3. Folding Funnels
A note on the widely used concept of folding funnels

follows. The term “folding funnel” was introduced by
Leopold et al.138 in the framework of a conceptually novel
suggestion that some native structures may be kinetically
accessible while other native structures may not be. These
authors studied two sequences of lattice 27-merssone that
folded into a special structure and a random sequence. The
first one was able to fold in 500 000 Monte Carlo iterations
while the second one was not. Leopold et al. explained this
difference by lack of kinetic accessibility for the second
structure. The kinetic accessibility criterion was defined in
ref 138 as the requirement that a “folding funnel”sa set of
interconvertions between maximally compact 27-mer struc-
turessthat leads to the native statesexists for a given
structure. Leopold et al. state that “convergent kinetic
pathways or ‘folding funnels’ guide folding to a unique,
stable native conformation”. In the same vein, they concluded
that “we introduce the concept of ‘folding funnels’, a kinetic

mechanism for understanding the self-organizing principle
of sequence-structure relationship”. Similarly, several other
authors view the folding funnel as a kinetic concept. David
Wales in his textbook139 writes, “The set of monotonic
sequences that lead to a particular minimum was termed a
‘basin’ and in this sense a ‘basin’ is analogous to a ‘folding
funnel’ described in terms of a collection of convergent
kinetic pathways...” (p 246). Similarly, Ozkan and coau-
thors140 present funnels as a kinetic concept. These authors
studied a simple 2-dimensional lattice model and concluded
that “folding in this model is fast, multichannel, and funnel-
like in the sense that conformations are fed by higher energy
conformations and pour into lower energy ones...”

The key prediction of the “folding funnel” theory of
Leopold et al.138 is that some sequences cannot fold due to
kinetic inaccessibility of their native structures despite the
fact that they may be thermodynamically stable in them. This
interesting prediction potentially suggests another selection
criterion for protein structure. While the work of Leopold et
al. did not provide an estimate of how severe this requirement
is (i.e. which fraction of 27-mer structures is kinetically
inaccessible), the one example that they providedsa ran-
domly chosen sequence whose native state was deemed
kinetically inaccessiblessuggested that perhaps a significant
fraction, if not a majority of structures, may be kinetically
inaccessible and only some special ones would be accessible.
(Indeed, in the opposite case, when a majority of structures
are kinetically accessible, the kinetic accessibility as a
selection criterion would be irrelevant.) However, in lattice
model simulations carried out over the past 15 years, we
and others did not encounter a single kinetically inaccessible
lattice structure for a 27-mer as well as for longer chains.
For example, the study in ref 141 addressed the question of
how folding rate depends on chain length. To that end,
folding into 20 randomly selected lattice structures with chain
lengths in the range of 10-100 units was studied using the
sequence design procedure described in section 3 (this work
can be viewed as a “high-throughput” version of the
computational experiment presented in Figure 2), and no
lattice structure was found to be kinetically inaccessible.
Similarly, the study of 200 random sequences by Sali et al.
showed that the energy gap is a single predictor of the ability
of a sequence to fold regardless of its native structure.40

Others (see, e.g., refs 142 and 143) folded numerous lattice
structures using the same design-folding approach as high-
lighted in Figure 2, and they did not report instances when
kinetically inaccessible structures were encountered. That is
not to say that folding rate does not depend on the native
structures at all: several researchers found and discussed such
a dependence.62,63,143,144However, variation of rates between
different lattice native structures was found to be within
approximately an order of magnitude,143,144i.e., well within
the normal folding rate variation for natural proteins.145

Another, perhaps more widely used (or assumed), meaning
of a folding funnel is that of special properties of the energy
landscape presented as the energy of a proteinE(X1,X2,...)
projected into a small set of coordinates.146,147In their model,
Bryngelson and Wolynes presented mean energy as a
function of fraction F of amino acids in their native
conformation.6 Sali et al.41 projected the energy surface of a
model protein on the SK order parameterQ using sampling
and a histogram technique as explained above (Sali et al.
also presented theF(Q) andS(Q) functions). In both cases,
the resulting effective energy depended on temperature.
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The concept of folding funnel, or “funneled landscape”
in this “landscape” version, is a statement that such a
projectedE(X) function is monotonic, pictorially resembling
a “funnel”, perhaps with some fine structure reflecting its
“ruggedness”.148 In some cases, the terms “smooth funnel”
and “rugged funnel” are used to highlight certain intuitive
aspects of theE(X) function. For example, the Bryngeslon
and Wolynes functionE(F) is always smooth, monotonically
decreasing, and the Sali et al. functionE(Q) was perfectly
monotonically decreasing or “funneled” at high enough
temperature even for random sequences. This is not surpris-
ing since both functions represent potentials of mean force
and their monotonic behavior follows from general thermo-
dynamic rules.

This interpretation of a folding funnel is intuitively
highlighted by the cartoon representation of “folding funnels”
that can be found in the literature.147 Axes are usually not
labeled in cartoon representations; that is, the coordinates
X1, X2, ... are not specified. However, selection of coordinates
to present a “folding funnel” (in its second, “landscape”,
interpretation) is a key issue, and the results depend crucially
on how coordinates for theE-projection are selected. This
issue is highlighted in the work of Ozkan and coauthors,140

who studied the folding mechanism of a simple 2-dimen-
sional lattice 16-mer within the Go model approximation of
energetics. Go models are deemed to be archetypical “smooth
funnels”.108 Indeed, if energy is plotted vs SK reaction
coordinateQ (the number of native contacts), theE(Q) is a
perfectly monotonic function (by definition), indeed invoking
associations with a “funnel-like” landscape. However, the
authors of ref 140 used another set of coordinates obtained
from principal value decomposition of the conformational
space of the 16-mer. The first two principal axes were used
to create theE(X1,X2) surface, and the result is that this
surfacefor the same Go modelis extremely rugged, or as
the authors of ref 140 put it, “Using the singular value
decomposition we show an accurate representation of the
shapes of the model energy landscapes. They are highly
complex funnels”.

So, for the same simplest 16-mer Go model, a funnel can
be “smooth” (if the SKQ coordinate is used) or “highly
complex” (which even does not visually resemble a funnel
if the coordinates of Ozkan et al. are used). Furthermore, in
a recent study,149Krivov and Karplus show that the projection
of the energy function on preselected coordinates may be
grossly misleading as it conceals the true complexity of the
conformational space and the physics associated with that.
The authors state that “...the standard funnel picture of protein
folding should be revisited”. In the same vein, Caflisch
argued that projection of the (free) energy landscape into a
specific coordinate (in his case SKQ) can be misleading.136

He showed, for a small peptide, that such a projection groups
together structurally and kinetically different conformations
by mixing, for example, in the sameQ-bin, conformations
from native, denatured, and transition state ensembles.136

Another complication is that, for a complex system with
many degrees of freedom, free energy rather than energy
determines, in principle, the folding process. In this sense,
theE(X) graphs may not be reflective of the folding process
at all! The entropic part of the free energy in this reduced
representation comes from sampling over all degrees of
freedom unconstrained by selection of projection coordinates
X. This makes such “landscape funnel” plots also dependent
on the temperature.

However, the key issue with “landscape funnels” is that
the relation of “funneled” (or “nonfunneled”) landscapes to
folding kinetics is entirely unclear, as explained in the
previous chapter. This is again dramatically illuminated by
Ozkan and co-workers.140 Looking at the energy landscape
for their 16-mer Go model (Figure 9 of ref 140), one would
immediately infer a trap-dominated complex folding scenario
resulting in nonexponential kinetics (the relation between
traps and nonexponential kinetics was rigorously established
in ref 98). However, the actual kinetics observed is perfectly
exponential, and the detailed kinetic mechanism revealed by
the master equation approach could not have been inferred
looking at the “energy landscape” for the model. The study
of Ozkan et al.140 puts the utility of the “energy landscape”
perspective for protein folding kinetics into question prima-
rily because energy landscapes do depend dramatically on
the choice of coordinates in which the “landscape” is plotted.
The coordinate of choice should be a “true reaction coordi-
nate” (TRC). In this case, free energy gradients will be
indicative of the direction of the folding process, as explained
above; however, such a TRC is not known, and even its mere
existence is a matter of debate. A candidate for the TRC,
the SK parameterQ, advocated by some researchers,108 was
shown to be inapplicable even for a relatively simple peptide
with realistic transferable potential.135,136 Therefore, unless
the TRC is found, the “landscape funnels” will remain a
highly arbitrary and perhaps misleading concept. On the other
hand, the utility of the concept of the “kinetic folding
funnels” advocated by Leopold et al.138 hinges on the ability
to define kinetic connectivities in protein models of realistic
size and assumptions about the dynamics of the system.

We showed in this section that there is a significant
variance of opinion in the literature as to what “folding
funnel” is. Unfortunately, until the community converges on
a clear definition of the “folding funnel”, the use of this term
is bound to generate a significant amount of unnecessary
confusion.

4.4. Structural Determinants of Protein Folding
Rate: Contact Order and Its Alternatives

The accumulation of experimental data stimulated the
search for empirical correlations between folding rate and
structural properties of proteins, and some were found indeed.
One of the most interesting of them is relative contact order

(whereNc is the total number of contacts between amino
acids in a protein,N is the total number of amino acids, and
the sum is taken over all (properly defined) contacts between
amino acids), which was shown to be a good predictor of
folding rates for several proteins.150 More recent experimental
studies found numerous exceptions to that correlation both
for mutants of already studied proteins151 and for several
newly studied ones152,153 (some many orders of magnitude
off the predicted rate153). It was shown in the original
publication that relative (i.e. normalized byN) contact order
as given by eq 4.2 is a good predictor of folding rate.
However, in a more recent revision of the concept published
by the same authors, it is now argued that absolute contact
order (defined in the same way as eq 4.2 but withoutN in

RCO)

1

Nc
∑
i<j

(j - i)

N
(4.2)
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the denominator) is a good predictor of folding rates. At the
same time, other, more simple structural determinants such
as the fraction of local1 and nonlocal, long-range contacts154

were argued to be equal, or better, predictors of folding rate.
A comparison and analysis of various predictors for a set
of 18 proteins was recently made by Kuznetsov and
Rackovsky.155 These authors argued the following: (1)
Values of the correlation between folding rate and contact
order are very data set dependent: values as high as 0.81
for 12 proteins150 or as low as 0.64 for 18 proteins156 have
been reported. (2) A highly significant correlation between
log(k) and secondary structure content has been found.157

(3) Both strength and distribution of the interactions have
been shown to play an important role in determining folding
rates.156 However, contact order is a purely geometric
property and does not account for these factors. Further,
Kuznetsov and Rackovsky showed that sequence-based
determinants such as the propensity to form various types
of secondary structure can serve as equally good determinants
of folding rate.155 Ivankov and Finkelstein proposed a similar
sequence-based predictor of folding rates also based on
secondary structure propensities.158 Apparently, a further
objective study that takes into account all available data is
needed to clarify which structure-based or sequence-based
parameters (if any) can serve as a unique and most reliable
predictor of folding rates.

4.5. Evolutionary Traces of Nucleation
Mechanisms. Conservatism of Conservatism
Analysis

An important observation was made in ref 98 that location
of the folding nucleus in the structure is conserved between
many model proteins that folded into the same structure
despite having very different nonhomologous design se-
quences. Experimental studies of nucleation in nonhomolo-
gous proteins that have similar structures arrived at similar
conclusions.159-161 These results provided the basis for the
“structure-centric” view, according to which any folding
potential (including Go) that leads to folding into a given
structure would provide a robust picture of the pathway,
including the location of the nucleus.

The observation that the folding nucleus is conserved
between proteins belonging to the same fold has an interest-
ing possible evolutionary implication. Indeed, if one assumes
that evolutionary pressure was exerted to control folding rates
(e.g. to prevent protein aggregation from happening before
proteins fold), then folding nucleus residues, being “ac-
celerator pedals” for folding, are under universally stronger
selective pressure in all proteins of the same fold (but not
necessarily the same function). This hypothesis suggests an
approach to detect folding nuclei from bioinformatics
analysis.78,79 The issue here is that residues in proteins may
be conserved for various reasonsstheir importance for
stability, function, and interaction with other proteins and,
perhaps, their role in folding kinetics. How can we distin-
guish between these different factors? Insight comes from
two observations: First, proteins having similar structures
but very different sequences and functions still may have
similarly located folding nuclei. That allows one to rule out
functional conservation by properly comparing proteins with
differently located active sites/regions. Second, the conserva-
tion for stability manifests itself in a very strong correlation
between residue buriedness in the structure and its conserva-

tion.70,79 Therefore, residues that aremore conserVed than
expected from buriedness factor aloneare under additional
pressure, besides stability. Thus, universally conserved (in
all protein families having given a fold) residues that are
outliers (toward higher conservation) from the buriedness-
conservation correlations are good candidates to represent a
folding nucleus for a fold in question. However, one has to
be careful in estimating conservation, because here com-
parison is made between proteins having the same fold but
vastly different sequences so that naive multiple sequence
alignment between them is not possible. Rather, one has to
determine conservation profiles within families of homolo-
gous proteins (i.e. within each minimum in Figure 3) and
then, using structural alignment, compare conservation
profiles to determine which positions appear to beuniVersally
conserved. Of course, identities of universally conserved
residues may vary from family to family, as shown sche-
matically in Figure 3; it is the fact of their universal
conservation in corresponding structurally aligned positions
(see Figure 3) that determines their possible special role as
belonging to the folding nucleus. The detailed analysis of
this property, called conservatism of conservatism (CoC) in
ref 79 provided predictions for the folding nuclei in five
common folds. In some cases, such as (R/â) plaits or
Rossman folds (CheY), the folding nucleus was already
determined from protein engineering analysis (φ-val-
ues)104,162,163and the predictions are in good agreement with
experiment. In other cases, most prominently for Ig-fold
proteins, the CoC analysis predicted precise locations of the
nucleus residues for all proteins having that fold.79 We noted
in ref 79 an interesting phenomenon of “circular permutation”
of amino acids in the Ig-fold nucleus. We found that the
folding nucleus always contained a 100% conserved tryp-
tophan residue, but its location in the nucleus varied from
family to family as if nucleus residues were making circular
permutations upon transition from one family to another.
Also, in some cases, strong hydrophobic contacts in the
nucleus observed in one family were replaced by a disulfide
bond in another family. In a series of papers, Clarke and
coauthors studied experimentally folding nuclei in the Ig-
fold family of proteins164,165and found that indeed the folding
nucleus appeared conserved between different proteins of
this superfamily and that its location was in agreement with
earlier predictions.79

It is still a subject of considerable debate as to whether
protein folding nuclei are under additional evolutionary
pressure as it is posited here. While such a suggestion was
made by us in refs 78, 79, and 141 and was used there to
successfully predict folding nuclei in several proteins, Plaxco
and coauthors argued against it.166 These authors sought
correlation betweenφ-values and sequence entropy in a
simple multiple sequence alignment and found it for some
proteins but not for others. In response, Mirny and Shakh-
novich167 argued that evolutionary pressure on folding nuclei
is in addition to other selection pressures such as ones for
stability and function. To this end, a careful CoC analysis78,79

is necessary to detect such additional pressure. A simple
multiple sequence alignment used in ref 166 would likely
fail to detect additional pressure on folding nuclei. In
response to that, Plaxco and coauthors,168 while emphasizing
the specific nucleus scenario of protein folding, essentially
reiterated their original argument based on the analysis of
multiple sequence alignments, making another round of
rebuttals redundant.
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4.6. Topology-Based Folding Models
The RCO correlation with folding rate and related

observations motivated the development of a class of highly
simplified models that allowed a detailed analysis under an
extremely limiting set of assumptions. One of such assump-
tions is that a conformation of a model protein should consist
of two contiguous “native” parts separated by no more than
one disordered fragment.156,169,170Nevertheless, analysis of
the putative transition states (identified as maxima of low-
dimensional free energy projections) in such models revealed
some consistency with reality, as found in comparison of
“predicted” φ-values with experimental ones. Overall, it is
sometimes difficult to judge the measure of success of these
analyses because in many cases the actual residue-by-residue
predictions ofφ-values were not reported. Another important
control that needs to be done is a test of whether predicted
correlation is much better than trivial null models, such as
correlations betweenφ-values and the buriedness of an amino
acid in the structure or the number of contacts that an amino
acid makes in the native conformation.

Plaxco and co-workers,171,172proposed the so-called “to-
pomer search model” (TSM). A basic assumption of the TSM
is that the rate-limiting step in folding is an essentially
unbiased, diffusive search for a conformational state called
the native topomer defined by an overall nativelike topologi-
cal pattern.

A comprehensive analysis of the feasibility of the TSM
was presented in a recent work by Wallin and Chan.173 These
authors examined key conclusions of the TSM using
extensive Langevin dynamics simulations of continuum CR
chain models. A careful determination of the probabilities
that the native topomers are populated during a random
search, as the TSM posits, apparently fails to reproduce the
folding rates predicted by the TSM, with discrepancy
reaching for some proteins up to 70 orders of magnitude.
Not surprisingly, simulations in ref 173 indicate that an
unbiased TSM search for the native topomer amounts to a
Levinthal-like process that would take an impossibly long
average time to complete. Furthermore, Wallin and Chen
argued that intra-protein contacts in all native topomers
(which are predicted to be transition states in the TSM)
exhibit no apparent correlation with the experimentalφ-val-
ues for these proteins.

This analysis of Wallin and Chan teaches us several
important methodological lessons. First, it shows that in
protein folding, as in any other field of science, the models
must be as simple as possible but not simpler. Second, it
shows that a partial success of a model, in this case
phenomenological correlation between a structural parameter
(in the case of the TSM, the number of long-range contacts)
and an experimental observable (e.g., folding rate), while
encouraging, may not serve as a proof of validity of a model.
Rather, a model must be physically consistent and be
consistent withall available data, or at least if partial
inconsistencies do exist, the model must offer an explanation
for them. While these simple recipes may seem trivial, they
are not always easy to follow when such a complex process
as protein folding is modeled.

On a more general note, a question arises as to the utility
of oversimplified topology-based models. The role of theory
in protein folding is to provide insights into thermodynamic,
kinetic, and evolutionary mechanisms that are not directly
available from experiment. The agreement with experiment
is necessary to validate the model’s assumptions. Validation

of the model makes believable the theoretical conclusions
that go beyond direct experimental observation. However,
in this case, the models assume mechanisms that are difficult
to verify, such as two stretches of native structure separated
by no more than one disordered loop. Karanicolas and
Brooks pointed out that such models may not provide a
reliable microscopic mechanism of protein folding.174 A
question then remains as to what one learns from oversimpli-
fied models.

4.7. Brief Note on Experiments
On the other hand, remarkable progress has been achieved

over the last several years in experimental studies of protein
folding. More advanced experimental techniques were de-
veloped that allowed researchers to significantly extend the
time resolution of their kinetic experiments to low micro-
seconds, using such approaches as laser T-jump and continu-
ous-flow.175,176Single-molecule techniques are used to probe
folding thermodynamics and kinetics.177-179 These and many
other experimental studies provided a much more detailed
experimental view on protein folding temporal and spatial
progression that either overcame or has the potential to
overcome such traditional limitations as loss of information
due to ensemble averaging or lack of time resolution to detect
intermediates or properly evaluate burst phases. To this end,
the discussion between Roder’s group and Baker’s group
concerning the intermediates in protein G folding is note-
worthy: while Baker’s experiments using traditional stopped-
flow equipment and W43 fluorescence as a single probe
revealed no intermediates,180 the use of a more time-sensitive
continuous-flow apparatus made it possible to discern major
on-pathway folding intermediates.97 Furthermore, a careful
analysis of Chevron plots for several proteins carried out
recently by Kiefhaber and co-workers revealed slight yet
noticeable curvature in the unfolding branch which can serve
as evidence of transient intermediates or multiple transition
states as well as the possible effect of mutations on the
unfolded state.181,182Similarly, Clarke and co-workers ana-
lyzed the nonlinearity of Chevron plots in several Ig-fold
proteins and concluded that its most likely origin is in the
existence parallel folding pathways passing through distinct
transition states and that denaturant may shift the dominant
pathway.183 The work of Radford and co-workers on helical
bacterial immunity proteins also revealed complex pathways,
including intermediates stabilized by non-native interactions
in some of them and the possibility to change the complexity
of a folding pathway via mutations.184 Further insights into
a detailed picture of the protein folding landscape can be
obtained from AFM pulling experiments185,186that the probe
free energy profile along complementary reaction coordi-
nates. In a recent work, Marqusee and Bustamante used
optical tweezers to induce complete mechanical unfolding
and refolding of RnaseH.187 A great advantage of optical
tweezers over AFM is that they allow a much slower rate of
pulling, making experimental conditions closer to equilib-
rium. That allows experimentalists to better relate single-
molecule results to bulk experiments and simulations,
opening an exciting possibility to observe experimentally
transitions in single molecules that so far could be seen only
in simulations.

4.8. Toward a Microscopic Description of the
Transition State Ensemble

This brief and by no means complete account of recent
experimental work in protein folding nevertheless illustrates
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impressive advances that provide detailed structural informa-
tion about many aspects of folding mechanisms.HoweVer,
at this point, experiment probably reaches the limit of its
ability to proVide structural insights without simulations. This
calls for very accurate computational models that match the
precision of experimental information and allow unambigu-
ous structural interpretation of experimental data. Of special
importance is structural characterization of transition state
ensemblessturning points (dynamic separatrixes, see above
and refs 99, 137, 188 and 189) on the free energy landscape
from which a protein is committed to fold.

Structural description of the TSE is impossible without
simulations because it corresponds to an unstable state whose
experimental detection is very difficult. While ingenious
experimental approaches based on protein engineering
methods provide extremely valuable information about
possible interactions in the TSE,104,162a structural model of
the TSE can be obtained only from high-resolution simula-
tions. However, full folding simulations to determine the TSE
ab initio are difficult for many proteins (see, however, refs
130, 190, and 191). To this end, approaches that incorporate
experimental data, such asφ-values, into simulations have
been proposed by several groups.

The Daggett group employed unfolding simulations analy-
sis based on the premise that unfolding is the microscopic
reverse of folding, This assumption was questioned by
several authors192,193 who showed that unfolding when
simulated at different conditions from those of normal folding
experiments may not represent the direct inverse of folding.
Such differences in simulation conditions may result in
significant differences in observed pathways. Nevertheless,
Daggett and co-workers found that their proposed models
of transition states are consistent with experimentalφ-values,
and in some cases, they were able to predict mutations that
significantly affect the folding rate in some proteins.194

4.9. Insights from Simulations of All-Atom Go
Model Proteins

While the successes of some of the all-atom simulations
are encouraging,195 they are still limited to very short proteins
or peptides, in some cases study unfolding rather than
folding, and sometimes rely on a very small number (less
than 10) of trajectories. At an intermediate level of complex-
ity, Go models of various degrees of detail proved useful.
As we said earlier, in the Go model, only interactions
between groups133,196or atoms130,197,198that are neighbors in
the native state are treated as attractive in any conformation.
The benefit of such models is that they “solve” the folding
potential problem by guaranteeing that the correct native state
is a global energy minimum. Their obvious shortcoming is
that knowledge of native structure is needed in order to build
such potentials, and also, they may underestimate non-native
interactions in some cases.199 However, in many cases, they
are the only potentials that allow full folding simulations
from random coil to native state and, as such, provide
extremely detailed insights into folding mechanisms for
model proteins. Following this route, we developed a novel
and powerful toolsall-atom Monte Carlo dynamic simula-
tions.197 The method takes into account all heavy atoms of
the protein and uses a move set consisting of a combination
of local and nonlocal moves. Calibration of the move set
appeared to be a major undertaking that included comparison
with dynamics of short peptides undergoing the helix-coil
transition and comparison of rates observed in simulations

(in terms of number of Monte Carlo steps) and experiments
where such data are available. That included the second
â-hairpin from protein G, whose folding rate is known from
experiments by Eaton and co-workers,200 as well asR-heli-
ces201 and several small proteins. In all cases, the observed
folding rates were highly linearly correlated with experi-
mental ones and the results on dynamics of helix-coil
transitions were consistent with MD simulations data and
experiment.201,202,203These results provided sufficient evi-
dence that the developed technique is accurate enough to be
useful for modeling folding mechanisms of small proteins,
and we embarked on the studies of protein folding at an
atomic level of detail. The first protein that we studied,
Crambin, was mostly a proof-of-principle study that showed
that, using atomic potentials that include realistic steric
interactions and contact Go atom-atom potentials, we
obtained numerous successful folding trajectories, for real
proteins, at the atomic level of detail, using available
computational resources. Nevertheless, even this first study
provided strong evidence about the complexity of folding
pathways and the relative role of energetic factors and
backbone and side-chain geometries in defining folding
pathways.

The next major undertaking in this direction was to
simulate complete folding of a protein that has been well-
characterized in experiment, the Ig-binding domain of
staphylococcal protein G.130 This protein appeared to be an
ideal model, as it is relatively short and is relatively fast-
folding (3-5 ms), and there is a plethora of experimental
data to compare with.97,180,204This project presented us with
numerous challenges, including the need to carefully calibrate
short-range potentials (mostly H-bond) relative to long-range
Go energetics. This was accomplished by setting the strength
of nonspecificbackbone hydrogen bonds to comply with
thermodynamic data on the stability ofisolatedelements of
the protein G secondary structure.

The simulation130 revealed a complex picture of protein
G folding that entails parallel pathways converging to a
common transition state ensemble (Figure 6). The transition
state ensemble contains a specific nucleus of six hydrophobic
residues, consistent with the general picture of the nucleation
mechanism and consistent with availableφ-values (see
below).

This study taught us several lessons, the most important
of which are that ensemble averaging (as is done in most
experiments) and selection of the experimental probe/reaction
coordinate (e.g. W43 fluorescence) may significantly affect
the apparent picture toward sometimes misleading conclu-
sions. It emphasizes a crucial role that simulations must play
in interpreting experiments“Only theory decides what we
manage to observe” (A. Einstein).

4.10. Using Experimental Constraints To Obtain
the Folding Nucleus at Atomic Resolution

The results of the most structurally informative protein
engineering method162 are often “visually” interpreted as
“high φ-value residues belong to the nucleus, while low
φ-value ones do not”. Such reasoning is qualitatively
acceptable in some cases but sometimes misleads. For
example, I76 in chymotrypsin inhibitor 2 (CI2) shows a low
φ-value in many mutations;104 however, a careful double-
mutant study attributes it to folding nucleus.205 In another
example, of protein G, the highestφ-values are observed in
the turn of the second hairpin, whileφ-values in other
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locations are noticeably lower.180 While this observation
points out the importance of the hairpin, it is hard to imagine
a TSE (i.e. a set of conformations withpfold ) 0.5) where
only one hairpin is folded while the rest of the protein is
not.

The qualitative character of the “visual” interpretation of
the protein engineering method was noted by Fersht and
Daggett,206 who insightfully pointed out thatφ-values should
be treated as experimental constraints akin to NOESY in the
NMR determination of protein structure. This idea was
further developed by Vendruscolo207,208and co-workers, who
usedφ-values to reconstruct theputatiVe transition state of
acylphosphatasesone of the proteins studied by Dobson and
co-workers using protein engineering methods.159 Vendrus-
colo and coauthors reconstructed the putative TSE for this
protein usingφ-values as constraints in high-temperature
unfolding simulations (using initially a reduced CR model208

and later an all-atom representation of proteins207). However,
they did not test whether the proposed conformations
represent the true TSE, i.e., the set of conformations for
which the transmission coefficient to the folded statepfold )
0.5.99

All-atom simulations provide a unique opportunity to
address this issue. First, we carried out the analysis of the
TSE for CI2209sperhaps the best characterized protein in
terms ofφ-value analysis.104 We showed there thatφ-values
correctly specify, in general, the TSE:〈pfold〉 over the putative
TSE appeared to be close to 0.5. The work presented in ref
209 was like a “proof of principle” both forpfold calculations
andφ-value analysis. Our subsequent study188 presented a
much more detailed picture of the TSE for protein G folding.

In particular, it clarified a number of key issues related to
the φ-value analysis:

(A) What is the minimal number ofφ-value constraints
to enable reliable reconstruction of the TSE?

(B) What is the relation between theφ-values of residues
reported in various mutations and their role in forming the
TSE?

The all-atom simulation of protein G188 provides some
answers to these questions for that protein. In particular, it
was shown that upon gradual addition ofφ-value constraints,
the〈pfold〉 (〈 〉 means averaging over many starting conforma-
tions of the putatiVe TSE, which are generated using
constraints derived from experimentalφ-values following the
Vendruscolo approach208) first grows and then saturates,
reaching the limiting value of 0.5. Most importantly,
distribution of the pfold-values over constraint-generated
putatiVe TSE starting conformations is pronouncedly bimo-
dal: many conformations are found with low and highpfold

and relatively few are found in between, withpfold ) 0.5.
This is perhaps not surprising because the TSE corresponds
to the free energy maximum; that is, it is comprised of the
least stable conformations (see Figure 7). However, this
simple observation clearly indicates that no reliable structural
characterization of the TSE withoutpfold analysis is possible.
In particular, the models of transition states based only on
constraints may be sometimes misleading. For example, an
unverified model of the TSE for SH3 domains (based on
constraints only) posits that the TSE for these proteins has
a nativelike topology and is structurally close to native state
for all three SH3 domains studied.183 However, a careful
analysis of the SH3 TSE that includespfold verification

Figure 6. Mechanism of folding of small protein G as derived from all-atom Monte Carlo ensemble folding simulations with the Go
potential.130 Parallel pathways through various helix-hairpin intermediates converge to a common nucleation step that leads to a final
folding step. (Reprinted with permission from ref 130. Copyright 2002 National Academy of Sciences, U.S.A.)
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presents a completely different picture: of a highly polarized
TSE with a well-defined small nucleus but with a significant
part of the chain disordered almost as much as in the
unfolded state.98,133,210It should be noted that the folding
nucleus in SH3 domains (as well as in other studied
proteins188,211) is “diffuse” in sequence:it is comprised of
residues that are uniformly distributed throughout the
sequence. However, the residues belonging to the folding
nucleus are well packed inspacein the TSE conformations.
This is very clear from thepfold-based analysis of contact
maps in the pre-TS (pfold < 0.5) conformational ensemble,
the TSE (pfold ) 0.5), and the post-TS (pfold > 0.5)
conformational ensemble. Contact maps are constructed to
show the contacts that are most probable in the corresponding
ensembles. Of special importance are differential contact
maps between the TSE and the pre-TS ensemble (Figure 8).
Apparently, such a differential contact map shows only the
contacts that are most important for the TSE: without them,
the TSE is not reached. These are the contacts that are
necessary to form in folding the TSE, i.e.,nucleation
contacts.The analysis of nucleation in SH3 domains reveals
as an important necessary structural feature the primarily
centralâ-sheet consisting of strands 2-4. It is a necessary
feature because it is always present in all TSE conformations.
However, it is not sufficient to form thisâ-strand to reach
the TSE. Indeed, the sameâ-sheet is formed in the pre-TS
ensemble. In other words, formation of the centralâ-sheet
is very important, but it does not guarantee that the TSE is

reached. What does? The answer to this question comes from
the analysis of the differential contact map between the pre-
TS ensemble and the TSE, which points to contacts that are
key to the TSE, i.e., that appear only in the TSE but not
before. The analysis of differential contact maps revealed
that a few key contacts are crucial for the TSE (Figure 8).
These contacts are between residues that are spread all over
the sequence but form a tight cluster in the structure. These
residues constitute thefolding nucleusfor SH3-folding: its
formation is key to reaching the TSE. Also, this set of
contacts, corresponding to the folding nucleus, corresponds
to a common, invariant feature among all TSE conformations.

4.11. Sequence or Structure? Insights from
High-Resolution Simulations

One of the most debated issues in protein folding is what
determines folding pathways: final structure or protein
sequence. While this question may sound somewhat scho-
lastic (since sequence always determines final structure), it
is not: there are many proteins that have similar structure
but very different sequences, and the relevant question is
whether such proteins have similar or different folding
mechanisms. This question has a long history. An early
indication that structure may be a more robust determinant
of the folding mechanism than sequence was made in ref
98. This proposal was based on a lattice model study.
Subsequently, several authors arrived at similar conclusions
using various techniques169,212 (see section 4.4 for a more
detailed discussion of the evolutionary implications of this
finding). However, in some cases, the apparent exceptions
to the perceived robustness of the folding pathway were
found. For example, in the small helical protein Im7,
mutations changed the observed pathwaysfrom an apparent
two-state mechanism to a three-state213 folding mechanism.
Similarly, Baker and coauthors showed that structurally
similar proteins G and L have different distributions of
φ-values,214 suggesting that these two proteins may have
different folding pathways. However, a detailed analysis
based on simulations of protein G in the structure-centric
Go model130 showed that certain features of the folding
pathway are flexible and certain features are robust. In
particular, there may be many pathways leading to nucleus
formation passing through various metastable intermediates.
This aspect is flexible, as mutations can easily shift distribu-
tion between different paths and stability of the intermediates.
However, all these pathways converge to a single nucleation
step, and the structure of the nucleus is robust in the sense
that it is mostly determined by the final structure of the
protein (see Figure 6). Proteins having different sequences
but similar structures have very similar folding nuclei. This
conclusion is supported by experimental studies. For ex-
ample, Radford and co-workers showed that despite the fact
that two homologous helical proteinssIm7 and Im9sfold
via two- and three-state mechanisms, the TSE structures of
these proteins are very similar.215 The apparent discrepancy
between results for L and G proteins obtained by Baker and
co-workers180,214can be attributed to difficulties of derivation
of the TSE from “visual” inspection ofφ-values. Indeed,
when detailed analysis usingpfold was carried out for protein
G188 (using experimental constraints and Go model simula-
tions), its folding nucleus appeared to consist of several
tightly packed hydrophobic residues (consistent with other
proteins such as S6,211 SH3,161,216CI2,104 etc) rather than a
â-turn, as one would naively expect based on visual

Figure 7. Schematic representation of the putative free energy
landscape and the idea ofpfold. The transition state ensemble
corresponds to the set of conformations at the “top” of the free
energy barrier (saddle point on the free energy landscape). Passing
the top of the barrier from the unfolded to folded direction changes
the dynamic behavior of the folding protein: it becomes committed
to (on average) downhill folding. Folding dynamics starting from
conformations on the “folded” side of the barrier always (apart from
an unlikely recrossing event) ends in the native basin; hence, for
these conformations the probability to fold is 1. On the other hand,
folding dynamics that starts from conformations on the “unfolded”
side of the barrier ends inevitably in the unfolded state; for such
conformations,pfold ) 0. Conformations that belong to the barrier,
i.e., transition state ensemble, have equal probability to fold and to
unfold; for them,pfold ) 1/2. A rigorous definition of the transition
state ensemble (TSE) is a collection of conformations having
pfold ) 1/2. A detailed discussion of how to define and determine
pfold in realistic all-atom simulations can be found in ref 188. The
inset shows that the ensemble distribution ofpfold is bimodal with
TSE conformations corresponding to the minimum probability. The
hypothetical plot here is shown along the hypothetical “reaction
coordinate” for which the top of the barrier coincides with the TSE.
The identity or even existence of such a reaction coordinate is not
known. (Reprinted with permission from ref 188. Copyright 2004
Elsevier.)
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inspection ofφ-values. The locus of the correctly determined
nucleus appears invariant between proteins G and L.
Similarly, the location and composition of the folding nucleus
are invariant between the three SH3 domains (spectrin, src,
and fyn), as revealed in a recent study.210 Davidson and
coauthors217 suggest that that answer to the question “do
proteins with similar structures fold via the same pathway?”
is ambiguous. However, our analysis based on combination
of detailed high-resolution computations with experimental
data gives a less ambiguous answer: that afolding nucleus
is a robust feature of a protein and its location is determined
primarily by its final structure. Other aspects of the folding
pathway (e.g. how protein “ascends” to TSE) may be more
sensitive to details of sequences and change even upon single
mutations.

4.12. Discontinuous Molecular Dynamics (DMD)
Simulations: Domain Swapping and Amyloids

A complementary simulation methodsdiscontinuous
molecular dynamicsswas used in a number of studies to
explore folding mechanisms in coarse-grained models of
folding.102,103,218-222 This method is based on direct propaga-
tion of dynamics by solving energy and momentum conser-
vation equations each time protein atoms interact between
themselves or with “ghost” solvent particles. Several models
were studied within the Go model energetic prescriptions
from generic compact structure102 to SH3 domain103,223 to
amyloid-like aggregates.222,224The analysis of these simula-
tions shows that the developed picture of a specific nucleation
is very robust between models and simulation techniques.

Further, a very promising model to study protein aggrega-
tion and amyloidosis222 was developed within the DMD
simulations approach. The energetics of this model is based
on specific side-chain-like interactions combined with non-
specific backbone hydrogen bonding. This is a multiple chain
Go model whereby the amino acids interact following the
Go prescription not only for their own chain but also between
identical chains. The multichain Go model of Ding et al.222

provided an intriguing experimentally testable generic model
of amyloid fibril formation. More recently, the same model
was used by Wolynes and coauthors for their study of
dimerization of SH3 domains, with identical conclusions
concerning the domain swap mechanism225 of aggregation
and a very similar structural model of dimers of SH3
moleculessprecursors of amyloid fibrils.

In a more recent work,226 a sequence-based coarse-grained
energetics model (as opposed to the structure-based Go
model) was developed to fold the Trp-Cage miniprotein using
a DMD simulation technique. The authors of ref 226 note
that suceess in folding of the Trp-Cage miniprotein by this
method and by atomistic MD simulations191,227 may be
attributable to specific features of the folding and energetics
of this miniprotein and may not necessarily be transferable
to other cases.

4.13. Long-Time Side-Chain and Backbone
Dynamics sA Glassy Story

The all-atom Monte Carlo simulations tool made it
possible to address several problems that previous coarse-
grained models were not able to approach due to their (over)-

Figure 8. Differential contact maps between the pre-TS ensemble and TSE for src SH3 domain folding133 (upper panels): (a) for contacts
between geometric centers of side chains; (b) for contacts between Câ atoms. The lower panels of both contact maps correspond to the
native structure of the SH3 domain. (c) Cartoon diagram of a sample TS structure determined bypfold analysis. Residues with contact
probability changes from pre-TSE to TSE (as shown in the upper panel of part b) greater than 0.1 are shown in the space-filling scheme.
They constitute a polarized folding nucleus for this domain. (Reprinted with permission from ref 133. Copyright 2005 Elsevier.)

Protein Folding Thermodynamics and Dynamics Chemical Reviews, 2006, Vol. 106, No. 5 1581



simplified character. One of them is the issue of statistics
and dynamics of side-chain packingsan aspect of protein
folding that was recognized by many as a cornerstone.228,229

The all-atom MC simulations were used to address this
problem. First, a direct sampling of side-chain packing states
was performed to resolve a long-standing issue:228 how many
side-chain packing arrangements are sterically compatible
with a given backbone conformation? The analysis was
performed for several models of stericssfrom hard-shell to
van der Waals soft-shell steric interactionsswith an unex-
pected conclusion: that many (exponential in the number
of side-chain degrees of freedom) conformations are compat-
ible with a given backbone conformation.230 Naturally, this
degeneracy is broken in real proteins by interactions so that
the native conformation of side chains is energetically
favored over alternatives (decoys). The side-chain packing
decoys generated by this algorithm are used to develop
atom-atom potentials for protein folding using potential
optimization techniques.31,231-233

The large conformational space of side chains even in the
tightly packed state suggests that there may be a peculiar
dynamics of their packing during folding. Again, all-atom
folding simulations proved an invaluable tool to address this
difficult question. The analysis of many individual trajectories
for protein G folding makes it possible to develop a very
detailed picture of how side chains get organized in the
folding process, and the results are quite interesting. It
appears that there is a broad distribution in time scales for

side-chain packing times even with apparent two-state
kinetics, but side chains that constitute the nucleus are the
fastest to acquire their native conformation!234 This result
was obtained in ref 234 in simulations of a new lattice model
with side chains as well as in analysis of trajectories of all-
atom simulations of protein G.

Further analysis of protein G folding trajectories revealed
a complex folding scenario whereby the major features of
protein topology and packing of nucleus side chains get
established first concurrently with nucleation while side-chain
packing of the rest of the structure occurs over a longer time
scale and is accompanied by backbone fluctuations (see
Figure 9).

These longer-time-scale fluctuations appear to be of a
peculiar character, resembling glass transition dynamics with
its signature power law relaxation of many characteristics
such as total energy. A detailed analysis of such relaxation
processes requires a new theoretical approach based on
mode-coupling theory.235-237 A general theoretical formalism
based on mode-coupling theory applicable to homo- and
heteropolymer dynamics has been developed in ref 237. It
was shown there that in the low temperature regime a glass
transition that would feature a long-time nonexponential
relaxation of energy may indeed occur. However, this is only
a small initial step. A comprehensive theory that would treat
directly side-chain relaxation in proteins is a matter of future
development.

Figure 9. Schematic representation of the full dynamic process of folding that includes side-chain organization. The main nucleation
barrier is overcome first and leads to establishment of the overall fold. Subsequent dynamics includes local fluctuations of the backbone
accompanied by progressive freezing of side chains. Barrier heights are shown for illustrative purposes only and may be exaggerated and
not representative of the real situation. (Reprinted with permission from ref 234. Copyright 2003 Wiley.)
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4.14. From Ensemble to Single Molecules −Pulling
and Stretching

The analysis of protein G folding130 suggested (perhaps
not surprisingly) that ensemble averaging in experiments
may conceal important features of folding pathways. To
this end, single-molecule studies appear to be a very
important complementary approach to elucidate folding
kinetics and landscapes. The first successful single-molecule
study of protein folding was published by Hochstrasser and
coauthors.179 A number of interesting studies fol-
lowed;177,185,187,238-240 in most cases, protein stability/unfold-
ing was probed in mechanical AFM experiments when the
molecule was mechanically stretched (with the notable
exception of the optical tweezers approach of Bustamante
and co-workers187).

The theoretical foundation for understanding the mechan-
ical response of proteins in single-molecule experiments starts
from the analytical theory of mechanical properties of
random heteropolymers.99,241This theory predicted a regime
of gradual stretching of a heteropolymer when a force comes
close to a critical valuefc, with intermediate structures
resembling a bead on a string. Furthermore, a phase diagram
of a stretching heteropolymer was presented as a function
of temperature and stretching force that outlined the regimes
where such intermediates can be observed. This results in
behavior that is quite different from that of mechanical
proteins, most notable titin, where domains unfold in a two-
state manner at or around the critical force.238 However, titin
is a protein selected by evolution to perform mechanical
functions. When a nonmechanical protein underwent stretch-
ing, it exhibited much more gradual unfolding,240 in complete
agreement with theoretical predictions, because, from the
point of view of special mechanical properties, barnase
(studied in ref 240) is not an evolutionary selected protein.
An interesting and important extension of this study is to
develop a theory and simulations of mechanical proteins, i.e.,
the ones selected by evolution to perform mechanical
functionsssuch as titin. This effort should combine simula-
tions in coarse-grained as well as all-atom models and
bioinformatics analysis aimed at determining which residues
define the mechanical robustness of such proteins. Interesting
simulations along these lines were reported recently.242

5. Toward Realistic Transferable Sequence-Based
Potentials for Protein Folding and Design

The all-atom Monte Carlo algorithm and several other
efficient all-atom and coarse-grained folding dynamics
algorithms are valuable tools to study folding dynamics and
thermodynamics. However, any folding study has two major
components: (a) a search strategy/dynamic algorithm and
(b) an energy function that should select the native structure
as the global minimum. The energy function used in most
of the all-atom studies described above is based on the Go
prescription. This may be a good choice to study the folding
mechanism as it indeed guarantees that the native state is
the global energy minimum. However, it requires knowledge
of the native structure (or at least NOESY constraints from
NMR experiments) and may underestimate the energetic
contribution and persistence of some non-native contacts.
The latter were shown to play a possible role in nucleus
formation, as predicted in simulations and bioinfomatics
analysis243 and confirmed in experiment.244

The next step, therefore, is to develop atomic sequence-
based potentials for all-atom simulations that would not

require knowledge of the native state and that may be
transferable between proteins. This task is extremely chal-
lenging, as many who work in protein structure prediction
and simulations may appreciate. A few avenues can be
explored here. Fundamentals of simple knowledge-based
approaches using quasichemical approximation of the type
pioneered by Tanaka and Scheraga245 and further developed
by Miyazawa and Jernigan246 were studied and generalized
to an atomic level of description247,248by Skolnick and co-
workers. In particular, these authors addressed the difficult
question of what should be considered areference statefor
such potentials. The reference state issue concerns the
statistics of pairwise frequencies in the case when no
interactions are present. Obviously, any meaningful statistical
signal about interactions should manifest itself in differences
between observed statistics of interatomic contacts in proteins
and those of the reference state. Another class of approaches
areZ-score and related optimization methods.31,232 A more
recent new approach to design atomic potentials for protein
folding was developed in our lab. It is based on selection of
atomic potentials to make realistic protein energetics re-
semble Go-based energetics as much as possible. To this
end, in the spirit of knowledge-based potentials, the interac-
tions often observed in protein structures are deemed more
attractive, while nonexistent interactions are more repulsive.
The form of the new potential (called theµ-potential) is
designed to coincide with the Go potential when derived on
one protein and can be closest to the Go potential in terms
of energetic bias to the native state when derived on an
independent training dataset of protein structures:

whereEAB is the contact interaction energy between atom
types A and B,NAB is the number of AB pairs found in
contact, andÑAB is the number of AB pairs in the database
that are not in contact.µ is a parameter that determines the
average interaction (repulsion or attraction); it can be chosen
to provide a uniform and high (10-20%) acceptance rate in
Monte Carlo simulations by preventing overly rapid collapse
or excessively slow compaction. The advantage of the new
potential (eq 5.1) is that interaction energies between all atom
types are confined to the range of values (-1, 1), avoiding
occasional overestimation of repulsive interactions in qua-
sichemical methods in cases when interactions are not
observed in the database. A systematic comparison of all
methods to derive atomic potentials (quasichemical ap-
proximation,µ-potentials, and optimization techniques) was
analyzed in a recent paper232 based on results of fold
recognition in gapless threading and against standard sets
of decoys. It appears that all derived potentials show a
significant degree of consistency in the sense that in all cases
the dominant interactions contributing to stabilization of the
native fold are the same (interaction between side-chain
atoms of aliphatic groups). However, in terms of performance
(Z-score of the native conformation),µ-potentials perform
better than quasichemical potentials and about as well as
optimized nontransferable potentials. This is important given
thatµ-potentials were derived on an independent dataset of
proteins and were not optimized to perform a specific task.

The first application of theµ-potential was for folding of
a small three-helix bundle protein. It showed repetitive and
systematic folding within a 2 Å rmsd from the crystal

EAB )
-µNAB + (1 - µ)ÑAB

µNAB + (1 - µ)ÑAB

(5.1)
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structure.249 However, this was not a fully transferable
µ-potential; it was derived using statistics of contacts in the
native structure of protein A itself. However, the potentials
derived from different databases seem to be strongly cor-
related,249 which is an encouraging sign that the potential
may be transferable. A more stringent test of atomic
potentials was made recently.54 The energy function used
for this study represented a linear combination of the explicit
hydrogen bonding potential (well suited to stabilize helical
but notâ conformations) and theµ-potential derived on an
independent database of 103 proteins that did not contain
tested proteins or their homologues. Eighty-four atom types
were considered (same as described in ref 249). Simulations
performed on seven small nonhomologousR-helical proteins
showed encouraging results, providing in six out of seven
cases folding to less than 4 Å rmsd structures from the native
state. The analysis of simulation results included clustering
of structures and observation that the largest disjoint clusters
the giant componentscontained the most nativelike confor-
mations (Figure 10).

Various graph-theoretical measures were tried to select the
“best” prediction, and it appeared that the most connected
conformationssthe ones that have the most similar confor-
mationssappeared to be statistically closer to the native state.
Energy alone was effective but was not the most effective
predictor of the nativelike conformations. One possibility,
as pointed out by Baker and Shortle,250 is that a clustering
procedure alleviates some inaccuracies that are present with
inexact potentials, taking advantage of a possibly greater
number of states surrounding the native structure of the
protein rather than infrequent low-energy decoys. Het-
eropolymer theory is consistent with that view, pointing out
that “random decoys” are akin to deep minima in random
heteropolymers and represent isolated small sets of confor-
mations on a rugged landscape, as explained in section 2,
while nativelike structures are less randomly organized.19,38

Caflisch observed a similar phenomenon using a different
clustering approachsa protein folding network.135

Of special interest are the control simulations carried out
for this study.54 Simulation of randomized sequence folding

resulted in a collection of conformations from which the
native structure of simulated proteins could not be identified
by energy or any graph-theoretical criteria. However, inter-
estingly, some infrequent conformations were found that
exhibited relatively low (4.2 Å) rmsd with the native
structures of some proteins. This result may reflect some
conclusions from the distributed computing approach where
many folding simulations are run independently on a grid
of computers. Some conformations were found in distributed
computing among many simulations that were close in rmsd
to the native structure of a small target proteinsvillin
headpiece.195,251However, these low rmsd conformations did
not appear to be the lowest energy ones. A possibility exists,
therefore, that low-rmsd conformations observed in distrib-
uted computing simulations are the result of random collapse
rather than sequence-based energy-guided folding. A similar
random control for distributed computing simulations is
necessary to address this important concern.

Another control concerns the issue of the relative impor-
tance of pairwise interactions vs explicit hydrogen bonds in
formation of proper protein-like conformations. To this end,
a number of simulations were performed using an energy
function in which the explicit hydrogen bond term was turned
off. The resulting conformations formed almost perfect
hydrophobic cores and were as compact as native ones but
did not contain any helixes (less than 1% helical content)
(Figure 11).

This result, while it appears almost obvious, is nevertheless
important in light of recent suggestions that geometrical/
topological and generic factors alone (such as excluded
volume, topological constraints, compactness) are sufficient
to provide a protein-like architecture of compact polypeptide
globules (modeled as polymers with “finite thickness”).252-254

In a further development, the same authors incorporated an
explicit hydrogen bond into their model255 to explain existing
protein architectures. This view appears more consistent with
results of simulations and an earlier proposal by Ptitsyn and
Finkelstein.256 Most recently, Skolnick and coauthors showed
that a collection of compact structures with hydrogen bonding
is able to reproduce the complete PDB.257

Figure 10. Clustering of 200 conformations obtained in 200 independent simulation runs of an all-atom MC folding algorithm with a
sequence-based transferable atomicµ-potential for protein A (1BDD).54 Each node corresponds to the lowest energy conformation obtained
in each run, and an edge is drawn between any two conformations if the rmsd between them is less than 3.5 Å. The color code indicates
the rmsd from the native structure: purple,<4 Å; blue,<5 Å; green,<6 Å; yellow, <7 Å; orange,<8 Å; red,>8 Å. The central clusters
giant componentscontains all nativelike structures, while “peripheral” nodes are mostly misfolds. The right panel shows the control: clustering
of 200 conformations obtained in the same way but for arandomsequence with the same composition as that for 1BDD. Comparison
clearly shows that we observe sequence-guided nontrivial folding and that clustering focuses the landscape for the real sequence toward the
correct native structure. (Reprinted with permission from ref 54. Copyright 2005 National Academy of Sciences, U.S.A.)
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6. Concluding Remarks. Is the Protein Folding
Problem Solved?

Well, the answer to this question “depends on what ‘is’
is” (William Jefferson Clinton). While many (but not all)
conceptual aspects of protein folding (that used to be centered
around the “Levinthal paradox”) appear well understood and
established, there is a lot of room for development and further
studies, as indicated throughout this review. Perhaps in
coming years we will see further progress in using a
predictive atomistic level model to achieve a complete
description of the folding pathway for several proteins. In
particular, an important aspect of the protein folding problem
is currently poorly understood. At what stage of the folding
pathway do side chains get packed and fixed into their native
rotamer states? All-atom Monte Carlo simulations suggest
that as protein “descends” after the nucleation stage, most
side chains adopt their final native conformations via local
fluctuations.234 Side chains belonging to the nucleus get
“frozen” earlier, when the nucleus is formed. While probable,
this picture needs further testing both by experiment and by
other simulation techniques.

A decisive departure from structure-centric (Go) models
to sequence-based all-atom models that are capable of
simulating the full folding process from random coil to a
native ensemble of conformations is an urgent need and an
emerging reality. While the consequences of such models
for structural genomics are obvious, it is equally clear that
their study will have a significant impact on the further
understanding of protein folding mechanisms. In a certain
sense, such atomic-level simulations will represent a “final
solution” of the problem of the protein folding mechanism.
However, protein folding has been an active field for more
than 30 years, and probably all conceivable mechanisms have
been proposed in the literature either as pure speculations
or as insights from coarse-grained models. In this sense, “the
final solution” of the problem of the protein folding mech-
anism will most likely look like a multiple-choice problem
rather than an “essay”-like solution presenting an entirely
novel mechanism that nobody thought of in the past. Most

likely, the “final solution” will combine elements of many
mechanisms that researchers observed in simplified models
in more pure forms, so that in a sense the best “multiple-
choice” answer will sound like “all of the above”. Neverthe-
less, we are bound to witness decisive progress in studies of
protein folding in the coming years.
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