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1. Introduction

As was noted in our recent reviewthe protein folding
field underwent a cyclic development. Initially, protein
folding was viewed as a strictly experimental field belonging
to the realm of biochemistry, where each protein is viewed
as a unique system that requires its own detailed characteriza-
tion—akin to any mechanism in biology. The theoretical
thinking at this stage of development of the field was
dominated by the quest to solve the so-called “Levinthal
paradox” that posits that a protein could not find its native
conformation by an exhaustive random search. Introduction,
in the early 1990s, of simplified models to the protein folding
field and their success in explaining several key aspects of
protein folding, such as two-state folding of many proteins,
the nucleation mechanism, and its relation to native state
topology, have pretty much shifted thinking toward views
inspired by physics. The “physics”-centered approach focuses
on the statistical mechanical aspect of the folding problem
by emphasizing the universality of folding scenarios over
the uniqueness of the folding pathways for each protein. Its
main achievement is a solution of the protein folding problem
in principle, i.e., a demonstration of how proteiosuldfold.

As a result, a “psychological” solution of the Levinthal
paradox was found (i.e. it was generally understood that this
is not a paradox, after all). The key success of this stage of
the field is the discovery of the general requirements for
polypeptide sequences to be cooperatively foldable stable
proteins and the realization that such requirements can be
achieved by sequence selection. That put the field strongly
into the realm of biology (“Nothing in Biology makes sense
except in the light of Evolution” (Theodosius Dobzhansky)).
The physics-based fundamental approach to protein folding
dominated theoretical thinking in the past decade (reviewed
in refs 1-4), and its successes brought theory and experiment
closer together.
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At the present stage, we seek a better understanding o
how the protein folding problem i&ctuallysolved in Nature.
In this sense, the protein folding field has made a full circle,
as attention is again focused on specific proteins and details
of their folding mechanism. However, these questions are
asked at a new level of sophistication of both theory and
experiment. Understanding of general principles of folding
and vastly improved computer power make it possible to

Shakhnovich

2. Random and Designed Heteropolymers —A
Fundamental Model of Protein Folding

2.1. Random Heteropolymers Do Not Fold
Cooperatively

At the very basic level of coarse-grained microscopic
models, statistical mechanics provided tools that facilitated
our understanding of many fundamental and universal
properties of proteins. A fundamental statisticalechanical
model of a protein is a heteropolymeric molectiles study
provided many insights into thermodynamic and kinetic
properties of protein3:®

Studies of protein folding using coarse-grained protein
models followed two routes; A phenomenological approach
was proposed by Bryngelson and Wolynes, vplostulated
a certain type of energy landscape (random-energy-model-
like) for a protein-like molecule and explored the conse-
guences of such a postulated energy landscape for protein
thermodynamicsand kinetics. The random energy model
was introduced by Derrida as the simplest model of spin
glassed? It is a phenomenological model that assumes that
a system has M microstates (in the case of proteins, each
microstate is a conformation) and that the energies of these
microstates represent statistically independent random values
drawn from a Gaussian distribution. Bryngelson and Wolynes
postulated just that for energies of different conformations
of a protein-like heteropolymer. In addition to that, they
postulated that proteins also have a special conformation
the native stateand that each amino acid can be either in
its native conformation or in any of non-native ones. The
authors adopted “The Consistency Principle” proposed by
Go!! (termed in ref 6 as the “Principle of minimal frustra-
tions”) by assuming that when amino acids are in their native
conformations their intrinsic energy, secondary structure
energy, and pairwise interaction energy are lower than those
for interacting amino acids that adopt non-native conforma-

develop tractable models that sometimes achieve an atomi 1ons. _
level of accuracy. Further, a better general understanding of An alternative approach was proposed by Garel and

the requirements for polypeptide sequences to fold led to Orland? and Shakhnovich and Guthlt is based on a
establishment of direct links between protein folding and statistical-mechanical analysis of a microscopic model that
evolution of their sequences. This development created andoes not assume any landscape or conformational preferences
opportunity to employ powerful methods of bioinformatics @ priori. Rather, it derives the energy landscape of a model
to test predictions of various folding models, in addition to protein from *“first principles*-i.e., by taking into account
more traditional tests of models against experiment. After only a polypeptide chain connectivity and a known set of
all, evolution presents a giant natural laboratory where interactions-and evaluates its consequences for the ther-
sequences are designed to fold and function and the avail-modynamics and kinetics of folding.

ability of vast amounts of data certainly calls for its use to  The statisticat mechanical model defines a microscopic
better understand folding of proteins at very high resolution. Hamiltonian, i.e., how the energy of a conformation depends
At the same time, in vitro experimental approaches pro- on the coordinates of all its atoms and on the (fixed) protein
gressed to the point that very accurate time- and structure-sequence:
resolved data are available. A close interaction with experi-

mentalists helps to keep theorists honest by providing detailed

tests of theories and simulation results.

In this review, which to a great extent reflects the thinking
of the author on the subject, we will first summarize basic where a conformation is determined through a set of its
guestions and present simple, coarse-grained models thaatomic coordinate§r;}. The protein chain’s sequenceis},
provide a basis for a fundamental understanding of protein and the interaction energy between amino acids of types
folding thermodynamics and kinetics. Then, we will discuss and ¢; depends on the distance between them (via the
more recent developments (over the last five years) that focuspotential energy functiorJ(ri — rj)) and their chemical
on detailed studies of folding mechanisms of specific identities—via the interaction potential matrB. The partition
proteins, and finally, we will briefly discuss some outstanding function of the model protein is a sum over all its conforma-
questions and future directions. tions:

H{r} {o}) = ZB(Oi!Oj) U — ) (2.1)

1<]
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H{r}.{o})
Z= c;fg(ri — Tiyy) XY — T

(2.2)
whereg(r; — r;) is a function describing the connectivity of
a chain® it accounts for the chemical structure of the
polypeptide representing the (conditional) probability that
residue + 1 is found aroundi+; when the preceding residue,
i, is atr;. Several forms for the functiog were proposed in
the literature®®14 selection ofg corresponds to the model

choice of the local (along the sequence) interactions; such a

choice determines the mechanism of flexibility of a polypep-
tide chain. In principle, eqs 2.1 and 2.2 are sufficient to fully
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sequences to th&ee energy are at most-N, and such
contributions from highly atypical sequences are easily
overwhelmed by the exponentially low probability of their
occurrence.

Therefore, to obtain a representative description of protein
thermodynamics in an analytical heteropolymer model, one
should average, over sequences in the enserttiefree
energyof a protein chain

[F(T)I= —kTY P({0}) log(Z({ o}, T))
{3

(2.3)

wheredJdenotes the average over all sequenBégg}) is

evaluate the sequence-dependent thermodynamic propertiete probability of occurrence of a sequenge} in the

of a protein model. In practice, their solution and analysis
present a formidable task both conceptually and technically.

ensemble, and the summation is taken over all sequences.
The next and even more conceptually difficult question is

Conceptually, the issue is what questions can be meaning-over which ensemble of sequences to take the average in eq

fully asked within such a theoretical framework? It is quite 2.3. Averaging over an unbiased ensemble of all possible
clear that a low-resolution description is not suitable for sequences (i.e. assumiRg= constant in eq 2.3) means that
prediction of thermodynamic and kinetic properties of Protein sequences are treated as being randomly selected
specific proteins. Apparently, this class of coarse-grained from the pool of all possible sequences, i.e., that no
models may be most suitable to address questions related t&¢Volutionary selection (pressure) on protein sequences is
generic properties of proteins, common to all of them or to assumed. Averaging over a biased ensemble of sequences
a wide range of protein sequences. Some questions tha€orresponds to evolutionary selected sequences. Thus, pos-
received much attention in the context of coarse-grained Sible evolutionary selection enters the theory via the prob-

analytical models are as follows:

ability distributionP{c} in sequence space (see below).

(1) What are the general requirements for sequences to Averaging in eq 2.3 is a daunting task because the partition

be protein-like, i.e., to have stableunique native structure
as its lowest energy conformation?

(2) Which sequences fold cooperatively (i.e. thermody-
namically two-state) into their native conformation?

(3) Are the thermodynamic requirements of the stability
and cooperativity of the native conformation sufficient to
make this conformation kinetically accessible, or is additional

sequence selection necessary to ensure kinetic accessibility?

A key technical difficulty in studying the heteropolymer

function to be averaged enters it under logarithm. However,
it is possible to evaluatéFJin eq 2.3 using the replica
approach which was first proposed by Edwards and Ander-
sort® and then significantly developed further by Parisi and
co-workerd8 in the context of spin glass studies. The replica
method is an ansatz based on the relation

<Z">-1

n

<logZ >=lim,_,, 24)

model of proteins is that proper averaging over sequences

is required. This represents both a conceptual and technica

challenge. Conceptually, the difficulty is that one has to select
such properties of a heteropolymer whose average value
are representative of the majority of individual realizations,
i.e., whose probability distributions are sharply peaked

around average values. In this case, evaluation of averagey

will be meaningful, as it will describe a majority of individual
molecules.Physical quantities whosevarages are repre-
sentatbe of a majority of realizations of a random system
are called self-aeraging It was shown, first in the theory
of spin glasses, that free energy (i-ekT In 2Z) is a self-
averaging quantity, while, e.g., the partition function itself,

Z, is not self-averaging. This can be understood if one realizes
that very rare, atypical realizations of sequences (e.g ho-

mopolymers) can make exponentially large contributions to
the partition function. As a result, despite the fact that such
realizations are extremely rare (e.g. the probability to have
a polyvaline molecule oN residues in the ensemble of
randomly synthesized sequences is")0the overall con-

tributions from such atypical sequences to the average

partition function may be significant since their energy in
some conformations (e.g. compact globule) may be very low,
so low that their Boltzmann factor expH/kT) in eq 2.2
overwhelms the weight 20 corresponding to the slim

probability to find such a sequence. As a result, the average

partition function may be heavily affected by sequences that
are very atypical members of the ensemble of protein

gnd the observation thaf"Uis relatively easy to evaluate
whenn is an integet-it is the averageover all sequence

51realizations,partition function ofn identical systems (rep-

icas, hence replica method). While analytic continuation of
expression 2.4 to noninteger valuemnd$ a mathematically
ery challenging task whose subtleties are not still fully
understood, the technique was sufficiently developed in spin
glass theory to provide major insight into its equilibrium and
nonequilibrium properties.

Heteropolymer theory as the basis for a fundamental
understanding of protein folding was developed within the
framework of the replica approach by Shakhnovich and co-
workers>171° Detailed analysis based on eqs-2214 not
only revealed thermodynamic properties of random het-
eropolymers but also provided major insights into the nature
of their energy landscape. It turns out that replica averaging
over sequences results in an emergence of the order
parameter that turns out to be extremely useful to understand
the general properties of the energy landscape of heteropoly-
mers. To see this, we consider the simplest case of a contact
Hamiltonian:

1 N
H{r}) = 5 ZB(Oivoj) o(ri — ) (2.5)
B

whered denotes that two amino acids interact (with energy
B(0i,07)) depending on their typesi,o; when they are in

sequences. On the other hand, contributions of very atypicalspatial proximity to each other. (An important nonspecific
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three-particle interaction term is omitted in eq 2.5 for brevity; indexesa, 3, etc.) and configurations of the heteropolymer
the full analysis is in ref 5. Further, assume, following ref chain in its deep energy minima where it spends a significant
5, that interaction energi&; = B(oi,05) can be approximated  amount of time. Note again thatsymbols in eq 2.11 count
as independent random values drawn from a Gaussiancontacts; that is, they are 1 if monomeendj are in contact
distribution, i.e., (i.e. within a certain short distance from each other) and 0
otherwise. Apparently, the order parameter introduced in eq
P{o} = Hp(Bij) (2.6) 2.11 counts the number of common contacts, i.e., the
i structural overlap, between chains in two configurations
corresponding to deep energy minima. The quantity that
provides a comprehensive description of the energy landscape
of the heteropolymer is then

and

1 _(gj-Bou2m?
p(BIJ) = 2. 1/2e ! (27)
(7B°) PQ= 5> p{r)pdrs) oQ— dy) (2.12)
where B is_ a standard devia}tion qf interaction energies trah {ra}
between different types of amino acids d@fs an average  \yhere p({r.}) is the Boltzmann probability of being in a

interaction: ifB, < O, attraction prevails, on average, giving - state where the chain has coordinateg . It is quite clear
rise to the tendency to chain collapse, angit 0, repulsion  {hat only deep minima contribute ®(Q) because only for

prevails, on avernage. . them do Boltzmann probabilitigs have noticeable values.
Averaging ofZ" over sequences leads to the expression The physical meaning of eq 2.12 is simple. If one statistically
n N1 samples conformations with their thermal probabilities (so
n a_ o that only conformations residing in deep energy minima
'z szol;ll D glri’ = riva) contribute), thenP in eq 2.12 is the probability that

conformations from two minima have structural similarity
n N Q. In other wordsP statistically characterizes the landscape
- D B =) ) in terms of how structurally different deep minima are.
o=1 Tj o The detailed calculations and analysis carried out along
exp — KT [ p(By) dB; [] dri these lines in a series of publicatiéAs!® (reviewed in ref
=1 b 2.8) 19) provide a comprehensive description of the thermody-
) namic properties and energy landscape of random het-

Here, the new “replica index’o. appeared as a direct €ropolymers. It turns out that properties of random het-
consequence of averaging theh power of the partiton ~ €ropolymers depend on the dimensionality of space in which
function. One can view it mnemonically as averaging the they are embedded, witth= 2 being a critical dimension
partition function ofn identical sequences that do not interact Separating two qualitatively different types of behavior. The
among themselves. Averaging over sequences in eq 2.8 (i.eanalysis of the low-dimensional cade< 2 was carried out
integration over B;) is performed first; it amounts to in refs 20 and 21, where it was shown that the energy
evaluation of many independent Gaussian integrals. Thelandscape in this case is hierarchical, “smooth” in the sense

result of averaging over sequences is emergence of anthat most low-energy conformations have significant struc-
effective Hamiltonian such that tural similarity to the conformation with lowest energy, the

“native” one. It was argued in ref 21 that this property of
n N-1 Hoe{ri}| Nn the energy Iandscape of low-dimensional heteropolyr_ners_ is
7= fl_l |—| g(r® — ) exp) — I—l dr® due to a very important role that polymer bonds play in this
a=1 = o case: in compact states of low-dimensional polymers, the
(2.9) majority of contacts appear to be between residues that are
near each other along the chain. While the low-dimensional
where heteropolymer case is of little relevance to proteins, the
replica-space variational approach developed in ref 21 to treat
~ o o such heteropolymers was used by Mezard and Parisi to study
B z ofri’ — rj) o random manifold® and since then has been adopted in
! JBZ various fields, including studies of polymer géland certain
z S(r% rj“) 6(riﬁ . r,ﬁ) (2.10) types of fermionic systems, including high-superconduc

II' tors?*
=B 1] The full analysis for a more relevant case of 3-dimensional

where B = By — BY2kT is the renormalized (due to the spacé&?® showed that the “energy landscape” of random

heterogeneity of interactions) “average” interaction strength. Neteropolymers is “rugged” in the sense that it consists of
The second term is most important, as it introduces a new S€veral deep energy minima of comparable (differing by just
and extremely valuable order parameter that “mixes” dif- & féw kT per molecule) energies but that conformations

ferent replicas (we remind the reader that Greek letters belonging to these minima are structurally unrelated. These

N N,

KT

Heff{ riOL} =

N

B, etc. denote replicas here) deep energy minima which are structurally very different
’ from the native state can serve as traps en route to the native

o = Za(ria _ rj“) 6(riﬁ _ rjﬁ) (2.11) state-hence th_eir possible _ir_nportance_for folding kinetics.

: Thermodynamically a significant fraction of random het-

eropolymers can be stable in the “native state” (lowest energy
whose simple physical meaning can be understood when oneconformation® but that can happen only at low enough
considers the analogy between replicas (marked by thetemperature, and most importantly, the transition to the native



Protein Folding Thermodynamics and Dynamics Chemical Reviews, 2006, Vol. 106, No. 5 1563

state upon temperature decrease is gradual, akin to thdemperatures at or beloWy the folding time of a protein
transition to the zero entropy state in the random energy equals the Levinthal tim&According to the Bryngelson and
model>10 Wolynes calculations, the fastest folding apparently occurs
The approximation of mutually statistically independent in their model at infinite temperature (see Figure 3 of ref 9),
Gaussian-distributed energies of interactibaveen amino  but the reason for this unphysical result may be due to the
acids(eq 2.5) simplifies calculations significantly. It corre- dependence of the parameters of the model on temperature.
sponds to the case when the number of amino acid types isThe Bryngelson and Wolynes study of kinetics within the
large?® The opposite case, that of only two types of amino REM approximation and their prediction of the glass
acids, such as hydrophobic and polar, was solved in 1993transition were further analyzed by Gutin et?aBesides
by Sfatos et al” In this case, one can no longer assume pointing out the technical issues with the Bryngelson and
independence of interaction energies between amino acidsWolynes kinetic REM calculatiohthese authors carried out
and a new theoretical formalism (a version of the Stratono- folding simulations for the lattice model within a broad range
vich—Hubbard transformation) was developed to tackle this of temperatures and for several native structures. They found
issue. A new factor has to be considered in the case ofno signature of the glass transition in these simulations
heteropolymers with two types of amino acitthe possibil- just a pure Arrenhius dependence of folding rate on tem-
ity of microphase separation of amino acids of different types perature and an exponential distribution of folding times.
(e.g. separation between the hydrophobic core and theGutin et al. proposed a simple REM-based phenomenological
hydrophilic surface). An interesting result of the analysis of model of kinetics that correctly reproduced the temperature
the “two-letter” heteropolymers is that microphase separation dependence of folding rates in simulatigs.

and chain “freezing” (i.e. dominance of one or very few  ap gnalytical replica-based study of the microscopic model
lowest-energy structures) may in certain cases compete Withsimilar in spirit to that of Go was performed in 1989 by

each other; for example, chain freezing may prevent mi- ghakhnovich and Guti#. The interaction Hamiltonian was
crophase separation under certain conditions (see ref 26*assumed in ref 30 to be Go-like:

where a complete phase diagram of a two-letter random

heteropolymer is presented). However, the energy landscape 1N

in the case of “two-letter” random heteropolymers appears 1) — = o 0_ .

to be the same as that for the model of independentH({r'}) 2; Bo(r; = 1)) o(r r]°)+
interactions-consisting of sets of deep energy minima 1N

corresponding to conformations that are structurally unrelated z Z Byo(r; — 1) (2.13)

to each other. A general case of multiletter heteropolymers 24 b

was considered in ref 18. A detailed, more technical,

discussion of these issues and further references can be founghere(r% is the set of coordinates of the native conforma-

in the 1997 review by Sfatos and Shakhnovith. tion andBy is the average interaction energy. The first term

) in eq 2.13 is a manifestation of the Go model: it posits that
2.2. Theory of Evolutionary Selected Sequences: interactions between amino acids that are in contact in the
Proteinlike Cooperative Behavior native conformation are energetically favorable by energy

t. marginB. The Go model eq 2.13 presented in ref 30 features

eropolymers is that they do not exhibit many protein-like &0 important property: the native conformation, having
properties such as cooperativity of their folding transifiéh. ~ CONtacts, is separated by an extensive energyapfrom
Further. it was shown that native structures of random the setof misfolded compact conformations (molten-globule-

heteropolymers are extremely susceptible to mutations: Thellke). This is a defining feature of most Go models, at least
probability that a random mutation in a random heteropoly- I 3-dimensional space. The full statistieahechanical
mer does not result in a dramatic change of native structare@nalysis of the model in eq 2.¥3where the replica method
was found in ref 28 to be very slim. Apparently, such Was used.to average free energy over all possible native
instability to mutations is not conducive to proper evolution- conformations{r®%) showed that in this case the transition
ary selection and is in direct disagreement with genomic O the native state occurs as a true cooperative, first-order-
observations. like phase transition.

The inadequacy of the random heteropolymer model to ~ While earlier work&°*3°relied explicitly on the assump-
describe proteins is perhaps not surprising as proteins aretion that amino acids in their native conformations or making
biological macromolecules whose sequences underwentnative contacts have a special energetic preference, a more
evolutionary selection. In particular, it was first posited by general thermodynamic condition for heteropolymers to be
Go'! that proteins should have special properties, such asprotein-like was discussed in ref 25. The authors of ref 25
“consistency between different types of interactions and studied the conditions for thermodynamic stability of the
structures™! and later by Bryngeslon and Wolynes that all unique native state and introduced explicitly the concept of
interactions between amino acids that are in their native energy gap, i.e., the energy difference between the lowest
conformations are energetically preferable by a certain energy (native) state and the lowest energy misfold as the
margin® Bryngelson and Wolynes carried out a kinetic main factor that determines the thermodynamic stability of
analysis of the same model. Their kinetic assumption was the native state. Further, they determined the probability that
that attempts at transitions occur between states whoseheteropolymers with unique native states can be found in a
energies are uncorrelated and the dynamics (acceptance dlone-shot” selection from the pool of random sequences, at
rejection of the attempt to move between states) is governeda certain temperature. They found that one-shot selection is
by the Metropolis criterion. The conclusion from calculations able to find (with low but nonvanishing probability) se-
presented in ref 9 was that there exists a particular temper-quences that have a large gap and, correspondingly, a stable
ature, calledTy (“g” stands for glass), and that at all native structure. However, while the condition of thermo-

The main conclusion from the analysis of random he
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dynamic stability of the native state, found in ref 25, indeed acids. “Maximal consistency” Go models essentially posited
requires a large enough gap (sevdrB), it does not require  that interactions between amino acids depend on whether
that the gap is extensive in chain length (i.e. proportional to they are neighbors in their native states or not. Such a
chain length when different proteins are compared). Accord- postulate is not entirely physical; for example, interaction
ing to ref 25, the probability of finding a sequence with a petween, say, valine and tryptophan is the same in any
stable native state in a “soup” of random heteropolymers conformation regardless of whether these two amino acids

becomes extremely low if the temperature excekdsthe  are neighbors in the native state of the protein or not. “The
temperature of the freezing transition in the heteropolymer minimal frustration” model of Bryngelson and Wolynes
model of refs 5 and 20 (same &g of refs 6 and 9). postulated that each amino acid has a special “native”

In 1992 Goldstein et & presented a phenomenological conformatiorf, but it is not very clear how that may come
model that explicitly assumed, without resorting to special about physically: the same amino acid can have different
“nativelike” interactions, that the native state is separated native conformations in different proteins, and it is also hard
by an energy gap from the set of non-native conformations. to imagine that amino acids keep a memory of their native
Their reasoning was that, in order to be able to fold, proteins conformations in any other conformation; that is, when
must be stable at temperatures aboNg that is, their proteins are synthesized, amino acids do not “know” what
unfolding temperaturd; must be higher thafy. Further, their native conformation would be. It is equally hard to
they introduced the ratid/T, as a criterion of protein  imagine, on physical grounds, that the set of states of a
foldability and sought to optimize the energy parameters for protein can feature a multitude of non-native, liquidlike states
the protein Hamiltonian to maximize this quantity. In fact, and just one, single native conformation as was assumed in
the “glass transition temperature” of Goldstein ef'als  ref 31. For such an idealized density of states, the first-order
equivalent to the putative freezing transition temperature in fo|ding transition emerges by construction: As temperature
a fully random system that is identical to the phenomeno- gecreases, a protein has no other “choice” rather than to make
logical protein modethas the same set of statésut without 3 giscrete jump to the postulated single native state. However,
the single unique, specific native state. A detailed analysis i reality, a protein’s density of states is not discrete with a
and critique of the concept c_>f glass transition in hetero_po_ly- single native conformation at the bottom and a gap devoid
mer systems can be found in ref 29. In a somewhat similar ot any conformations in between, but is a continuous plethora
vein, Camacho and Thirumatéisuggested a *foldability ot siates varying from very nativelike to totally dissimilar
criterion” of T/ Ty—the ratio between folding temperature and to native. (Reminder: the gap is defined as the energy

random collapse temperature. Dinner efaprovided a iftarence between the native conformation and the lowest
comparative analysis of various foldability criteria. energystructurally dissimilarconformation.) So, in reality,

In fact, theTi/T criterion of Wolynes et al. is equivalent it hecomes much less obvious if the transition to the native
to the requirement that the native state is separated by arstate is the first-order one even if a sequence has an extensive
energy gap from misfold¥. The difference between this gap. In fact, this issue can be resolved only in microscopic,
important criterion of Wolynes and colleagues and the earlier ot phenomenological, studies. As noted earlier, a micro-
gap analysis of Shakhnovich and Gatifs that theT/Ts > 5copic study for Go-model-like interactions indeed shows a
1 criterion implies that the energy gap is extensive, i.e., first-order-like transition to the native sta¥however, such
proportional to chain length (that can be discerned from eq g ansition is the first-order one only for 3-dimensional Go
2 of ref 31 upon st'rai'ghtforward additional analysis). In heteropolymers. In the lower-dimensional case 2, even
contrast, the analysis in ref 25 suggested that the thermo-,, oy 4ensive gap does not guarantee a cooperative befavior
dynamic stability of the native state alone does not requiré . .o e the set of partly folded states is organized in a
extensive gaps. However, extensive gaps provide not OnIy2-dimensiona| heteropolymer differently than it is in a
stability to the native state but also a cooperative, first-order- 3-dimensional heteropolymé. This fact also calls for
like fol.dlng transr.uorll. ) ) caution in interpreting results of folding simulations of square

An important insight from microscopic thedfyand lattice models.
phenomenological modéls! is that the existence of an
extensive energy gap between the low-energy native con-
formation and the lowest energy non-native, misfolded,
conformation issufficientto make folding the transition

Essentially phenomenological models such as that in ref
6 postulate some “ends” (e.g. cooperative transitions).
However, they do not mention “means”, namely physical
cooperative and first-order-like, as is indeed observed in €volutionary mechanisms by which extensive gaps, giving
many wild-type protein& However, at that time (late 1980s ~ "'S€ {0 such transitions, can be achiebgdsequence selection
and early 1990s), it was unclear to many researchers whethef €volution, even in principle. Itis this conceptual difficulty
a large (extensive) energy gap is alspezessargondition of phenomenological “minimal frustration” and Go models
for cooperative protein folding. Indeed, theoretical anafjsis that caused some skepticism about them and, by implication,
suggested that a cooperative transition may originate from @bout the concept of aextensie energy gap at the time.
other physical factors such as side-chain ordering, while the (While the key role of the energy gap in providing protein-
energy gap, being still very important to stabilize the native like stability to the native state was clearly stated in ref 25,
state at room temperatufedoes not need to be extensive the analysis in ref 25 did not require extensivity of the gap.)
in chain length. While phenomenological models clearly This fundamental issue was resolved in our work in 1993
highlighted a possible role of the extensive energy gap, it 199477373 where we showed that extensive gaps can be
was not entirely convincing at the time. The issue that achieved bysequence selectioalone within an entirely
concerned many researchers at the moment was that it waghysical microscopic model with a physically realistic
not clear how large energy gaps can be achieved in a realistidHamiltonian (see below for more details). The theoretical
evolutionary scenario where sequences are allowed to varydevelopmerif-3¢3reconciled microscopic evolutionary mod-
in evolution but not physical interactions between amino els with the phenomenological approach of Go and co-



Protein Folding Thermodynamics and Dynamics Chemical Reviews, 2006, Vol. 106, No. 5 1565

workers and Wolynes and co-workers, providing finally a P({0}}) = 6(E — ZB(O-,O-) ur’—r%) (2.14)
coherent view on necessary and sufficient evolutionary ! =
requirements for polypeptide sequences to be protein-like.

On a more technical note, in phenomenological modéks,  whered is Dirac’s delta function that limits the ensemble to
the gap is defined as the energy difference between the nativeonly sequences that have enefgin their native conforma-
state and thewerageenergy of the misfolded, “liquidlike”  tion, and{r°% represents the set of atomic coordinates of
conformationsAE in eq 2 of ref 31. This definition differs  the native structure for which sequences have been selected.
from those in refs 25, 27, 40, and 41, where the gap is defined(Technically eq 2.14 biases sequences to have low energy
as the energy difference between the native state and thdn their native state, not large gaps. However, as was shown
lowest energy misfolthat is structurally dissimilar to the  inrefs 27, 36, and 38 and will be argued later, under certain
native state. While one definition is related to the other by conditions, a low native energy translates into a large gap.)
a simple additive sequence-independent parameter, there ié\veraging free energy with a biased sequence ensemble eq
also a technical difference between the two: The parameter2.14 corresponds to consideration of only special sequences
AE playing the role of the gap in ref 31 is extensive in protein th_at are_se_lected to fold into their lowest energy structure
length even for random sequences (which can be estimatedVith a significant energy gap. _
if one setsT; = Ty in eq 2 of ref 31), but according to the However, practical calculations with sequence ensemble
definition of Shakhnovich and co-workers, such an extensive €d 2.14 are not feasible. One approach based on mean-field
gap exists only for special evolutionary selected sequences@PProximation that presenB{o}) as a product of single-
while for random sequences it is approximately a fefv  Site residue probabilities was proposed by Savem the
per molecule and does not grow with molecule size. context of combinatorial protein design.
However, this difference is purely technical, perhaps even Another approach is to use a canonical distribution instead

terminological. In fact, as we noted before, th&/T,’ of eq 2.14. It was pointed out in refs 27 and 36 that the
criterion of Wolynes and co-workefsis essentially equiva- ~ S€quence probability distribution given by eq 2.14 is
lent to the requirement of extensivity of the gap. equivalent to the microcanonical sequence space ensemble

. . . . ; in statistical mechanics. As usual, it is more convenient to
Detailed simulations of simple lattice models showed the j.5| with a canonical ensemble. ie.. instead of a rigid

importance of the gap as the main determinant of protein- . . ;
. ) _ L quirement that all sequences have a given (low) engrgy
like behavior, both thermodynamically and kineticafty>® i, t6ir native conformation (eq 2.14), which imposes a less

In the study of Sali et aff 200 random 27-mer sequences reqyrictive and perhaps more biologically realistic requirement
were generated and their folding was simulated using Monte 4t the ensemble of protein sequences is biased by evolu-
Carlo dynamics. The advantage of the 27-mer lattice model jjonary selection toward protein-like sequences, having low
is that all its compact c_onformauons can be enumef‘éféd enough energy in the native state, but this bias is not
so that the ground (native) state can be known exactly if the gpsojutely restrictive. Such a bias was introduced in refs 27,
energy function is such that native states are guaranteed ta3g 38 and 45 in the form

be compact. In addition, the availability of an exhaustive

conformational set made it possible to rigorously estimate

the energy gap. It was shown that sequences with large gaps H({ 0} {ro})

are the ones that exhibited fast folding to the native p (o)) = expl— ' _

conformationt® This result was further confirmed and Toeltt

extended in a subsequent stéfdywhere different folding sel

criteria were compared. The findings in ref 40 showed that ZB(ai,oj) ur® - rl-o)
a large gap isecessaryo provide fast folding. However, <]
this study was limited to one chain length (27 residues), and exp— (2.15)

it could not address the question of whether the gap should Tee

be extensive or not. Here T s the “selecti N -
Perhaps the most conclusive demonstration that the energ))N eréTsq s the “selective temperature” that represents the

. . . degree of evolutionary selection on protein sequences (a
gap is necessary and sufficient for cooperative and faStIowerT corresponds to stronger pressure). An extended
folding was obtained in computer experiments where the sel :

. X analysis of thermodynamics of designed protein-like se-
stochastic sequence design procedure generated sequencaaenceS was carried out by Wilder and Shakhnotfdh.
with large gaps and it was shown that such sequences d

. . ] : Qiffered from the initial analysis of Ramanathan and
indeed fold cooperatively and fast to their native conforma- Shakhnovick and that of Pande et 4L.in that it extended
tions*”44 (see section 3). :

the consideration beyond pure mean-field analysis by taking
The microscopic analytical replica theory of heteropoly- into account fluctuations in order parameters (in the one-
mers withevolutionary selectedgequences was developed |oop approximation) as well as the possibility of a two-step
in refs 38, 45, and 46. The key idea is that now averaging replica symmetry breaking (RSB) in the overlap order
of free energy in eq 2.3 should be over the ensemble of parameter. (RSB corresponds to equilibrium solutions where
evolutionary selected sequences. Technically that means thathe overlap order parameteg; depends on the replica
the probability of finding a sequenéin eq 2.3 should now  indices oo and 8. The physical meaning of RSB is that
be properly biased toward the correct sequence ensembledifferent “replicas®™conformations of the chain in deep
namely selected sequences that have a large (and extensivenergy minima-have different structural overlaps, which in
energy gap between their native conformation and a collec- turn reports on the complex structure of the energy landscape.
tion of misfolds. A direct, (yet impractical) way to achieve The specific nature of RSB is an indicator of the structure
this is to consider only sequences that fold with a certain of the energy landscape in the mod®lit was established
(very low) energyE into their native conformation, i.e. in ref 45 that one-step RSB is still a stable solution for the



1566 Chemical Reviews, 2006, Vol. 106, No. 5

5

45
4}
Frozen Globule

35

Disordered Globule

Native State

Selective Temperature

"

\\\\\
Tha
X
-

Disordered Globule

L )
0.5 2 25
Temperature

Figure 1. Phase diagram for evolutionary selected protein-like
heteropolymers. This phase diagram was derived in ref 45 for
heteropolymers consisting of two types of residubgdrophobic

and polar.. High selective temperature corresponds to random
sequences while lower selective temperature corresponds to protein
like evolutionary selected sequences. The transition from native
state to disordered compact state is cooperative first-order-like and
gradual for evolutionary selected sequences (dashed line) and secon
order for random sequences (solid line n&gr (Reprinted with
permission from ref 45. Copyright 2000 American Institute of
Physics.)

problem, and a new phase diagram for the model was
presented. It differs slightly from the original one proposed
in 19948 due to a more accurate approximation; however,
qualitatively, it is similar to the earlier versighand also
predicts a cooperative, first-order phase transition between
the native and disordered states for designed sequences a

The phase diagram of protein-like heteropolymers in
variables Tse, T) is shown in Figure 1.

A major insight from evolutionary heteropolymer theory
is that random sequences can be stable at low enoug
temperature in their lowest energy (“native”) conformations.
However, the transition to such “folded” states appears to
be gradual, with numerous intermediate metastable states.
This prediction from theory was tested by Goldberg and co-
workers in an elegant experimental sti@ylhese authors
isolated a 101-residue fragment beta-2-suburiisatherichia
coli tryptophan synthase (ECTS). In the intact ECTS, the
fragment makes most of its interactions with the rest of the
protein so that the isolated fragment can be viewed as an
essentially random sequence. The fragment forms a compac
conformation with some secondary structure but does not
fold cooperatively, as revealed by the calorimetric van't Hoff
criterion®

2.3. How Many Amino Acid Types Are Needed To
Design a Protein?

Computer experimentsand theory®*>4¢showed that it

is indeed possible to select sequences that exhibit protein-|

like behavior with large gaps. However, not every het-
eropolymer is amenable to such evolutionary selection.
Specifically, there should be proper diversity of interactions
to make it possible to find a sequence that has its native

N

the absence of a cooperative transition for random sequences.

Shakhnovich

phobic and polar, as in the HP motkglthat could stabilize
unique native conformations. The inadequacy of two-letter
heteropolymers was also noted in ref 39 and directly
confirmed in a lattice model study.A mean-field analysis
based on application of the random energy moiddiowed
that two factors play a role in determining whether a
polypeptide chain can have an energy gap. One is the
diversity of interactions that is determined by the diversity
of the amino acid alphabet, i.e., the number of amino acid
types. Another factor is chain flexibility, reflected in the total
number of its conformations. In particular, if a polypeptide
chain has the total number of residdé¢snd the number of
conformations per residue ig, then the total number of
conformations is

M =N (2.16)
The analysis presented in ref 53 showed that the necessary
condition for protein-like sequences (that have a large gap)
to exist should be

My =~ ¥ (2.17)

d

where

20

My = exp(= > p, Inp)

(2.18)

is the “effective” number of amino acid types (corrected from
the naive number 20 to account for possible disparities in
their compositiong;). The effective estimated maximal gap

r the best designed sequences is

G N In%f(ZBZ)”Z (2.19)

max—

hereB is the standard deviation of the interaction energies

wi
r‘between amino acids. The importance of the chain flexibility

parametery can be easily understood because greater
y-values give rise to a greater size of the conformational
space of misfolds (or “decoys”) (see eq 2.16). In turn, a
greater number of decoys makes it more probable that some
of them have low enough energy to close the gap between
decoys and the native state. This analysis suggests that
making the polypeptide more rigid by introducing local
interactions (the most prominent of them are of course
pydrogen bonds) leads to improved energy gaps and, as a
result, improved ability to fold. This conclusion is in
agreement with results of recent all-atom simulaibngich
showed that neglect of hydrogen bonding potential results
in deterioration of the discriminating ability of the all-atom
two-body potential (see section 5 for more details).

Kaya and Chat? tested many predictions of theory in a
careful and comprehensive computer experiment. They
studied the cooperativity of the folding transition in several
popular lattice models: the 2-letter 27-mer model of
Shakhnovich and Gutifi,the 3-letter 27-mer model of Socci
et al.> the 20-letter 36-mer model of Gutin et &l.a 48-
mer Go mode?® a “solvation” 2-letter HP modé¥, and a
short 20-letter model with side chains of Thirumalai et%al.

energy separated by a large gap from the decoys. DiversityKaya and Chan applied a rigorous experimental van't Hoff
of interactions is achieved when the amino acid alphabet is criterion to determine the cooperativity of the folding
diverse. In particular, it was pointed out in refs 37 and 45 transitions in these model®.In complete harmony with
that, under certain conditions, no sequences may exist fortheoretical predictions, they found that the Go model (an
proteins having only two types of amino acids (i.e. hydro- essentially infinite number of letters) and the 20-letter models
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are the most cooperative while short chain models as well stabilize the protein, resulting, not surprisingly, in slow
as 2- and 3-letter models are much less cooperative,folding at the condition when the native state is stable.

consistent with theolretlcal' predlct|p?FsFurther, Kaya and The interest in the criteria of protein cooperativity was
Chan found that 2-dimensional lattice model proteins do not reyived recently when Munoz and co-workers found a
fold cooperatively. Again, this finding is consistent with protein, BBL, that exhibited thermodynamically noncoopera-

heteropolymer theorywhich predicts that 2- and 3-dimen- e hehavio Based on this observation, the authors posited
sional heteropolymers exhibit very different behavior (see that this protein should also exhibit noncooperative kinetics,

above and ref 20). i.e., downhill folding. Downhill folding was also observed

. ) for other, mostly redesigned, proteft¥$®Most recently, Zuo
2.4. How Important Is Native Structure for Protein and coauthofE analyzed the possible structural determinants
Cooperativity? The Structural Determinant of of the folding cooperativity of several proteins. They found
“Downhill Folding” that the fraction of nonlocal contacts is an excellent predictor

]pf cooperativity or lack thereof: proteins with a fraction of
nonlocal contacts below a certain threshold all exhibited
noncooperative, or downhill, folding. This analysis fully
confirms earlier theoretical predictiof’s3

So far, we focused on the sequence selection aspect o
protein cooperativity. However, equally important is a
structural aspect of the problesmow does folding cooper-
ativity depend on the native structure of a protein? This
question was first addressed by Go and Taketomi, who ) ) ) )
studied a simple 2-dimensional lattice model with Go-type 3. Protein Design —Practical and Evolutionary
interaction$! These authors studied the relative role of short- ASpects
and long-range (along the sequence) interactions and con-
cluded that long-range interactions are essential for cooper-3.1. Stochastic Algorithms To Design Sequences
ativity while short-range interactions accelerate the folding with Large Energy Gaps
and unfolding transitions. The implication from this study . )
is that folding into structures with less long-range interactions T he idea to select folding (large gap) sequences from the
will be less cooperative. Govindarajan and Gold$fein canonical ensemble (eq 2.8) immediately suggestaaeti-
conducted a detailed study of the effect of native conforma- ¢l approach to find such sequences. Indeed, any stochastic
tion on sequence optimizability, i.e., the existence of Search in sequence space that converges to a canonical
sequences with large enough gaps. Consistent with Go andfistribution will do the job. Such a method was first
Taketomi, they found that prevalence of local interactions developed in refs 27 and 38Monte Carlo in sequence space.
in a native structure makes it more difficult to find optimized One issue that needs to be addressed in such a search is that
sequences for them. In their analysis, they usedTiiE, it can converge to homopolymeric sequences composed of
criterion and found that its value deteriorates for sequencesresidues that attract each other most strongly. Indeed, such
that fold into structures with more local contacts. Based on @ solution will certainly lead to low energy in the native
the assumption that/T, serves as a predictor of how fast a conformation, but it is flawed. The reason is that, in fact,
sequence can fold, they concluded that folding will be slow the energy gap between the native state and the set of
into structures with many local contacts. Abkevich ef3al. ~Mmisfolds needs to be maximized, not just the energy of the
addressed this question by designing sequences for thredative state. The simplest (albeit not necessarily most optimal
native structures of lattice 36-mer. One structure was chosenor most realistic, from an evolutionary standpoint) solution
to have predominantly local contacts, another structure wasto that problem was proposed in ref 27: to run a stochastic
selected to have almost exclusively nonlocal contacts, andMonte Carlo search in sequence space to minimize the energy
the third structure was picked randomly and had both Of the native stateinder the constraint of constant amino
nonlocal and local contacts in some average proportion. acid compositionThis idea appeared successful in preventing
Consistent with earlier conclusions, the cooperativity dra- the convergence to homopolymer sequences providing
matically depended on the proportion of local conacts. In sequences with optimized energy gaps. The reason such an
fact, the structure with only local contacts did not fold approach is successful was explained in ref 27. The low
cooperatively at all despite sequence design aimed atenergy boundary of conformations in the misfolded set
providing large gaps! Rather, it folded in a continuous depends primarily on amino acid composition. At the same
manner akin to the second-order rather than to the first-ordertime, the energy of the native conformation for which the
transition. The structure with predominantly nonlocal contacts Search in sequence space is carried out depends on sequence.
was very cooperative. The analysis of folding kinetics for Therefore, minimization of the energy of the native confor-
these three structures revealed a more complex picture tharination while keeping the amino acid composition constant
suggested by both Taketomi and Go and Govindarajan andprovided a simple way to maximize the energy gap.
Goldstein. It turned out that, at respective temperatures when This approach to sequence design, while being conceptu-
folding is fastest, the sequence whose native structure hadally simplest, is perhaps not the optimal because it, by
the mostly local contacts folded faster than the sequencesconstruction, is not able to also find an optimal amino acid
that had their native states in the other two structures, composition. Besides that, there is no condition of constant
consistent with the Taketomi and Go prediction. However, amino acid composition for natural proteins: compositions
at the condition when the native state is stable, folding was vary between organisms and between proteins in genéimes.
fastest into the structure with the most nonlocal contacts = Several improvements were suggested. First, as a proxy of
more in line with the Govindarajan and Goldstein view. This energy gap, th&-score in the native conformatiéfh
is perhaps not surprising. The cooperative transition occurs
in a narrow temperature range so that, even slightly below Exar{0}) — Eo{0})

T;, the protein may already be stable. When the transition is Z({o}) =
not cooperative, it requires much lower temperature to De({o})

(3.1)
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can be optimized in sequence space. Hagger({o}) is the
energy of sequend@} in the native (“target”) conformation,
and Ea({0}) and De({o}) are the average energy and its
dispersion (over alM conformations) of sequende}:

Z E({ o},conf)

conf

result provides fundamental experimental support to the main
conclusion from statisticalmechanical protein folding theory
that low energy in the native state (i.e. a large energy gap)
is necessary and sufficient for a sequence to be protein-like
and foldable. Earlier, this key conclusion from theory was
proven in simulation® where sequences were designed to
have a large energy gap for an arbitrarily chosen target and
were shown to fold into that target (see Figure 2). The

av

M Kuhlman and Baker worR is an experime.ntallcounterpart
(z (E({ o} ,conf) — Eav)z)l/z of an earlier computer experiméhshown in Figure 2.
_ cConf 3.2. Using Protein Design To Understand Protein
De = M2 (3.2) Evolution: Evolutionary Dynamics of Protein

Sequences and Designabillity of Protein

Apparently, homopolymeric solutions do not optimiZe Structures
score; ratherZ = 0 for homopolymers because in this case ~ The second direction of development and application of
Enar = Ea. Z-score optimization of sequences was first Stochastic sequence selection methods is to consider them
developed in ref 63 for lattice model proteins and was further as simple models of natural evolution. Along these lines,
extended to real proteins in refs 70 and 71. In particular, two important sets of results were obtained. First, one can
Takada and co-workers designed novel sequences for as€ek better understanding of evolutionary processes that result
known protein having a three-helix bundle structtitesing in formation of fold families, i.e., collections of sequences
the Z-score optimization as well as (for comparison) the of various degree of homology that fold into a particular
energy minimization approach with given amino acid Sstructure. Sequence family expansion under structural con-
compositions. The authors used a simplified protein repre- straints was explored in significant theoretical detail by
sentation where amino acids were represented as spheredokholyan and ShakhnovicK.In this work, the authors
Several of the designed sequences were synthesized, and orféeveloped theZ-score design method for real protein
of them exhibited protein-like properties: significant helical structures and used it to design sequences to fold into several
content, a cooperative unfolding transition (melting), and common folds. They followed the temporal progression of
significant chemical shifts as judged by 1-dimensiofl the sequence design and sequence families that emerged. The
NMR. However, the structure of this designed protein was authors found that protein sequence evolution could be
not determined, so it is hard to say whether this design wasunderstood in terms of a “free energy landscape” in sequence
fully successful. space. Local exploration of sequence-structure pockets
Another approach to design optimal sequences was(Which correspond to local minima on the evolutionary
proposed in ref 72, where sequenée? that maximize the landscape, see Figure 3) occurs on some time scale and

Boltzmann probability to be in the native state at a given represents the diffusion of orthologs and paralogs with
temperaturer respect to one another within this pocket. The pocket itself

is defined by a key set of residues that are constrained to
certain amino acids in order for that set of sequences to
support folding into a given structure, a fact that results in
the conservation of specific amino acids or amino acid types
at certain positions within the sequence faniflyOn a
separate evolutionary time scale, some sequences cross
are sought. “barriers” in this landscape and seed new local minima.
Exact evaluation of the sum over all conformations in the These local minima may be unrelated from the standpoint
partition function in the denominator of eq 3.3 is not feasible. of sequence comparison. The new sequence pocket may be
Instead, an approximation based on cumulant expansion ofsubsequently explored on a shorter time scale with certain
the partition function was used in ref 72. This approach opensresidues constrained. Sometimes, these transitions result in
the possibility to design proteins with selected thermal structures that are similar to the original structure. In this
properties-from mesophilic to hypethermophilic ones. It also case, comparison of the two sequence pockets demonstrates
accounts for the free energy difference between folded andthat theidentity of the conserved residues differs between
unfolded states (the latter is accounted for via estimate of the two but the structural similarity is maintained because

e Enat{o}/KT

Puat(T) = (3.3)

e E({ o} ,conf)kT

conf

the partition function).

the relativepositionsof these conserved residues do not

Further developments of stochastic Monte Carlo sequencechange. In other cases, the structural similarity is not

design procedures followed two tracks. First, it was applied
to design of model lattice proteins in ref 37 and to real
proteins (with extension to an all-atom model of a protein
and significant development of force fields to realistically
represent protein energetics) by Kuhiman and Bdkérand
by Mayo and co-worker¥ DeGrado and co-workefsused

the combinatorial design approach of Saven. In particular,

maintained and a brand new fold is discovered. Dokholyan
and Shakhnovich explored a model of protein evolution
involving several protein structures and found that those
residues with low substitution rates in their model tended to
have low “conservatism of conservatism” (CoC) entro-
pies’07879The CoC quantity, first introduced in ref 78 and
further studied in ref 79, considers families of sequences that

Kuhlman and Baker were able to design a sequence that folddbelong to the same fold and identifies positions that are

into a new fold’® In contrast to the work of Takadathey

highly conserved within families (i.e. have low sequence

used an all-atom representation of proteins, i.e., accountingvariance) and tend to be highly and universally conserved
for side-chain packing. Folding to the target structure was in the set of families of the fold (i.e. positions that have low

confirmed by crystallographic analysis. This remarkable

sequence entropy in many families within the fol#{}?
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Figure 2. Computational experiment showing that sequences designed with a large energy gap fold cooperatively and rapidly into their
native conformationd’ First, a structure is chosen to serve as the target, native conformation. Then sequences are designed (using Monte
Carlo search in sequence space with fixed composition) to have a large energy difference (gap) between the native conformation and the
set of structurally distinct misfolds. One such sequence is memorized. Monte Carlo folding simulations for this sequence start from an
arbitrary random coil conformation and quickly and cooperatively converge to the target conformation for which the sequence was designed.
The designed sequence has the target conformation as its apparent global energy minimum, as no conformations with energy lower than
that of the target (native) conformation are found.

A second direction where an analogy between protein the second order and also found that designability in this
design and sequence/structure evolution can be explored isapproximation is determined by the compactness of proteins.
to provide an estimate of the number of sequences that canSubsequent analy8#$®showed that second-order truncation
fold into a given protein structuré:>® The goal of this of the free energy expansion is equivalent to the sequence-
analysis is to address an important problem in evolutionary space random energy model of Finkelstein. However, such
structural biology as to why some protein folds are more an approximation may be limited. For example, it predicts
abundant than others. A proper sampling in sequence spacéhat all maximally compact lattice conformations are equally
makes it possible to estimate the number of sequences thatlesignable-in direct contradiction with the findings of Li
fold into a given structure, i.e., its designabiltf£°®82 Such and co-worker® and Goldstein and co-workets A more
calculations were carried out for several proteins in ref 53 detailed theory developed recently by England and Shakh-
and for many more (using a somewhat different sequencenovich® which allowed us to obtain, under certain ap-
sampling strategy and analysis) in ref 83. It was found for proximations, a closed form expression for free energy and
simple model&-84 and confirmed for real proteifsthat entropy in sequence space, suggested that a particular
different protein structures may have vastly different design- property of a protein structure, namely traces of higher
abilities. Then the question is what is a structural determinant powers of its contact matrix (CM) (or, equivalentlmax
of protein designability? The initial insight came from the the maximum eigenvalue of its contact matrix), may serve
work of Finkelstein and coauthors, who used the random as a reliable predictor of protein designability. The CM of a
energy model to estimate designabifi®yWithin this ap- protein of N amino acids is amN x N matrix whose i, n)
proximation, the overall compactness of a structure (total element is O if amino acidsy andn are not in contact and
number of contacts between amino acids) determines thel otherwise.
designability of a protein. Subsequently, Wolynes addressed The physical explanation of the correlation between traces
this question and reached a similar conclusfn. his study, of the powers of the CM and sequence entropy (i.e.
Wolynes used the approach of Shakhnovich and &utin designability) follows from the fact that these traces of
statistical mechanics in sequence space. He obtained gowers of the CM reflect topological properties of the
cumulant expansion of free energy in sequence space up taetwork of contacts within the structuteFor example, the
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FREE ENERGY IN
SEQUENCE SPACE

HOMOLOGS

Figure 4. lllustration of the physical reasons why and how the
structure of a protein determines its designability. The balls
. . . . schematically represent amino acids. Suppose that the interaction
Figure 3. Schematic representation of the evolutionary processes patyeen the “red” amino acid and the “blue” amino acid is favorable
that result in conservation patterns of amino acids. For a given anqg givesE = —1. The configuration on the left yields lower
family of folds, e.g. immunoglobulin (Ig) folds in this diagram,  energy,—4, compared with the structure on the right, where the
there are several alternative minima (3) in the hypothetical free contribution from interactions between these amino acids is only
energy landscape in the sequence space as a function of the_3 Thys, the 4-loop in the left structure contributes more to the
evolutionary” reaction coordinate (e.g. time). Each of these minima_ gyapjity of the structure overall, allowing more freedom to select
are formed by mutations in protein sequences at some typical timéhe remaining part of the sequence to obtain overall stabilization
scaleszyo, that do not alter the protein’s thermodynamically and/or  f the structure, Similar considerations apply to 3-loops, 5-loops,

kinetically important sites, forming families of homologous proteins. - etc. (Reprinted with permission from ref 87. Copyright 2005 Cold
Transitions from one minimum to another occur at time scales  Spring Harbor Laboratory Press.)

70 eXp(AGIT), where AG is the free energy barrier in sequence

space separating one family of homologous proteins from another. . .
At time scaler, mutations occur that would alter several amino 1 h€ Englane-Shakhnovich structural determinant of de-

acids at the important sites of the proteins in such a way that the Signability, imax, was tested using standard lattice model 27-
protein properties are not compromised. At time secatae family mers whose maximally compact conformations could be
of analogues is formed. In three minima, we present thr_ee famili_es exhaustively enumerated. The structures with highest and
of homologues (1TEN, 1FNF, and 1CFB), each comprised of six |gywest maximum eigenvalues of their contact matrixes can
homologous proteins. We show eight positions in the aligned be found, and their designabilities can be then directly

proteins: from 18 to 28. It can be observed that at position 4 . A
(marked by blocks) in each of the families presented in the diagram, COmpared by calculatin§(E), which is (log) of the number

amino acids are conserved within each family of homologues but Of sequences that can fold into a given structure with energy
vary between these families. This position corresponds to position E. This quantity can be calculated from Monte Carlo
21 in the Ig fold alignment (to 1TEN) and is conserved. We are sampling in sequence space using the analogy between
very grateful to Nikolay Dokholyan for preparation of this figure.  statistics of sequences and statistical mechanics of a canonical
ensemble (eq 2.15%. The comparison shown in Figure 5
trace of CM simply gives the total number of contacts (or, indeed indicates that structures that have a greater maximal
equivalently, the total number of two-step, self-returning eigenvalue of their contact matrixes (or, similarly, higher
walks) and the trace of CMgives the number of length-4  traces of powers of contact matrixes) are indeed more
closed loops in the network of contacts in the native structure designable: more sequences exist that can fold into them
of a protein and so on. One may also note that certain closedwith low energy.
Ioop_s of contacts allow for optimal pIacem_ent of amino ac_lds The analysis of sequence entropy curves presented in
that interact very favorably. For example, |f four amino acids Figure 5 reveals another interesting feattiieat it is easier
that strongly attract each other are folded into an architectureiq find thermostable sequences for more designable structures
where they all interact favorably (e.g. when placed on four than for less designable ones. Indeed, sequences that have
corners of a square, see Figure 4), this arrangement providegxceptionally low energy in their native states can be found
a greater contribution to the stability of the overall structure only for more designable structurethe blue curve in Figure
than configurations in which the same four amino acids are 5 engs at a higher energy than the red curve. This observation
arranged linearly or configurations in cases where the lastsyggests a possible direct implication for structural genom-
contact is out of the contact range (Figure 4). ics: that proteomes from more thermostable organisms will
Such optimal placement of a sequence fragment of severalbe statistically enriched with more designable structures. The
strongly interacting amino acids allows for more sequences comparative analysis of mesophilic and thermophilic pro-
to be stable in the structure by relaxing energy constraints teomes from various sources confirmed this conjecttite.
for the rest of the sequencEhus, the structures that provide This finding is very important, as it provides a direct
certain features, such as availability of long closed loops of connection between protein folding, structural genomics
interactions and higher density of contacts per residue, are(proteomics), and evolution of thermophilic adaptation.
expected to be able to accommodate a wider variety of Further, a connection between protein evolution and
different sequences. This argument is similar in spirit to the designability is revealed in comparison between gene families
derivation of the Boltzmann distribution in statistical me- of different sizes. The idea that designability may affect the
chanicg& and is similar to the justification for the “Boltzmann  size of gene families (so that more designable proteins can
device” used in the derivation of knowledge-based poten- accommodate more sequences, i.e., have gene families of
tials’®8 for the study of protein folding and prediction of greater size) was proposed by several researéher'
ligand binding energies. However, in the absence of a structural determinant of protein

QaVIxXo
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universal aspects. They helped to focus our thinking on key
common milestones along protein folding pathways such as
transition states and on- and off-pathway intermedigtes,
seen as ensembles of conformations. Importantly, many of
the experimental studies were directly motivated by specific
predictions and questions raised in theoretical studies. With
regard to folding kinetics, an important theoretical discovery
of a nucleation mechanism via formation of a specific folding
nucleug® was made using coarse-grainddttice—models.

As defined in ref 98, a nucleus is a minimal folded fragment
that results in inevitable subsequent unidirectional downhill
descent to the native conformation. Such a defined nucleus
was termed “postcritical” in ref 98 to emphasize that no
recrossing back to the unfolded basin occurs after its

high trace

potentially
thermostable
sequences

sequences

# of designed

& & ﬁ \ formation. A related definition of the folding nucleus as the
<?°< o A\ defining, common structural feature of all conformations
5 P = belonging to the transition state ensemble corresponding to
P ability

the “critical” nucleus suggests the probability to fold without
Figure 5. (a) Two lattice structureshaving the highest and lowest ~ recrossing back to the unfolded basimigs = /2, not just
predicted (by traces of their contact matrices) designabititéasl 1 as for the postcritical nucleus of Abkevich efahs noted

(b) counting of sequences that can fold into these structures with ajn the original publicatiorf® thus defined nuclei are related
given energyASis the entropy (log) of the number of sequences 1 aach other. The folding nucleus was found to be specific

that fold into a given structure with a given energy counted from . . . . g
fully unconstrained statistics (& = 0). Blue points describe the in lattice model simulation¥’ The specificity of the nucleus

entropy of sequences designed for the low trace structure, and redneans that a well-defined obligatory small fragment of the
points are for the high trace structure. The inset shows how many structure needs to be formed in order to guarantee fast decent

sequences can be stable (i.e. have high Boltzmann probability) into the native state. This conclusion was reached in ref 98
less and more designable structures, respectively. based on the analysis of folding trajectories, i.e., the search

for the invariant minimal set of contacts whose appearance
designability, such proposals were hard to evaluate. Now, preceded subsequent fast folding. This waypu#ative
structural determinants of protein designability are better nucleus was identified. Then control simulations were run
understood so that a direct test of the hypothesis thatto make sure that simulations starting from conformations
designability affects the size of a gene family could be carried with a preformed nucleus indeed rapidly descended to the
out®’ A statistically significant correlation between the size native state without recrossing to the unfolded basin, i.e.,
of a gene family and the designability of the protein structures that formation of the nucleuguaranteedsubsequent rapid
that it encodes was indeed foufiddowever, this correlation  downhill folding. A modified and extended version of this
is limited because other factors such as evolutionary history approach was introduced later by Du et al. and is now known
affect the size of a gene famityIndeed, when the factor of  aspy,q analysi® (see below).

the age of a gene family is taken into account, the correlation Independently, Guo and Thirumalai found the nucleation
between designability and size of a gene family becomes o anism in a different, off-lattice modé@fio! These
more pronounced. Further, it was found that more ancient 5,105 ysed a 46-mer continuous model having amino acids
proteins-i.e., the ones that are shared by all kingdoms of ¢y ree types that adopts a three-prongearrel structure.
life—are significantly more designable. Furthermore, in & g, ang Thirumalai found that in several of their Langevin
recent study of thermophilic adaptation, the proteomes of 4y namics simulation runs they “observed rapid formation

ancient hyperthermophiles, e 8. furiosus were found to ¢ 44ive hydrophobic contacts that is immediately followed
be much more enriched in designable structures than that Ofby folding to the native state’®® The authors found that
hyperthermophiles that evolved as mesophiles but later ]

lonized hot . % This findi ts that “nucleation sites” are found near the flexible loop regions.
recolonized hot environments. Nis linding suggests that — thay 3150 note that such a mechanism is observed only in
evolution progressed toward discovery of less designable

fractions of runs: roughly 40% of molecules reached their

proteins. This result can be explained by the observation that
as evolution progressed in time, search in sequence spac
was facilitated simply because evolution had more time to
explore it. The ability to explore sequence space more
thoroughly relaxed restrictions on structures for which viable
sequences could be found. This trend is also consistent with
observations from simulations of evolution in lattice mod-
els®

4. From Coarse-Grained to All-Atom Studies of
Protein Folding Kinetics

4.1. Discovery of Specific Nucleation in
Simulations and Experiment

Studies of simple models indeed contributed considerably
to our understanding of protein folding by emphasizing its

native state through a well-defined marginally stable inter-

fediate.

Dokholyan et al. also studied nucleation in an off-lattice
model using dicontinuous molecular dynamics simulations
(see below) and a dynamic criterion (akin fgg) to
determine the transition state ensemble (TS8E)These
authors observed a specific nucleus for a generic protein
model. Subsequently, a similar method was applied to
determine the TSE in several SH3 domains where also the
nucleation scenario was obser¥&dand the location of
nucleating residues appeared to be in good agreement with
experimentakp-values (see below discussion ¢fvalues).

In experimental studies, Fersht and co-workers pioneered
a protein engineering approach to determine folding nuclei
defined in a similar way-as the residues most involved in
folding transition states. They arrived, for two-state proteins
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such as chymotrypsin inhibitor 2, at a similar conclusion comparable to energetic ones in proteins so that energy alone
about specific nucleatiol* Fersht and co-workers character- does not determine the direction or path of the “folding
ized three key residues involved in the specific nucleus of reaction”.
CI2, and the same residues were independently predicted as An attempt to overcome this difficulty has been in pursuing
belonging to the nucleus in the theoretical analysis in ref the idea of dimensional reduction, i.e., projection via
105. Fersht analyzed the results from protein enginet¥ing sampling on a few effective coordinates and analyzing the
and lattice simulatior?8 and concluded that a nucleation free energy landscape in such a reduced space. In one of the
mechanism similar to the one found in lattice simulatfns first attempts along these lines, Shakhnovich and Finkel-
is a very plausible universal mechanism of folding for small steirf>!!(SF) introduced a simple “reaction coordinate”
two-state proteins. He coined the term “nucleation the volume of the whole molecuteand developed an
condensation” to emphasize the fact that the nucleus consist@analytical model for the free energy functi®ifV) under a
of residues that are uniformly distributed in sequence; hence,set of conditions such as assumption of affine deformation
bringing them together causes chain condensation. This isof the molecule. The SF theory took into account such factors
in contrast with the earlier proposal by Wetlaufer, who as side-chain entropy and solvation in the discrete water
envisioned a nucleation mechanism based on condensatiomolecule representation. The maximum in ) profile
of a few residues that are nearest neighbors along the ¥fain. curve was identified by SF as the transition state. It was
noted that the folding barrier is entropic from unfolded to

4.2. Chemical Reaction or Phase Transition? folded states and energetic as seen from the folded state and
“Energy Landscapes” Paradigm and Its that the physical nature of the barrier is in the partial fixation
Alternatives of the side chain uncompensated by a proper decrease of

energy and desolvation. Subsequent studies addressed the

Attempts to understand protein folding kinetics on theo- issue of desolvation of the protein core upon folding in more
retical grounds are deeply rooted in analogies with other, detail in simulationd?2113 This Shakhnovick Finkelstein
better studied systems. Of these, the two most powerful andtheory?s was viewed at that time as describing a first-order
conceptually very different ones are the analogy with |ike phase transition from the molten globule to the native
chemical, or, perhaps, biochemical reactféf%™'®and the  state which was perceived by us at that time (with available
analogy with a phase transitidh*°The major paradigm in  experimental data at hard) as the main cooperative
thinking about chemical reactions is that of a low- transition upon protein folding. A subsequent study by
dimensional energy landscape. The dynamics on an energyBoczko and Brookd® used the same reaction coordinate
landscape for a simple molecule(s) can be either ballistic or total volume of the molecutebut applied sampling and a
a diffusive motion along one or very few reaction coordi- histogram technique with conformational clustering to de-
nates. Reaction coordinaein simple chemical kinetics is  termine the free energy profil&(V) and the putative
defined as one or very few coordinates (that is a function of transition state for a small three-helix bundle.
all Cartesian coordinates that characterize the system) such The SF reaction coordinatéhe volume of the molecute
that the derivative of the energy functi&(X) (or, formany s limited in its ability to identify the actual folding
degrees of freedom, the free energy func#gX)) givesthe  transition—formation and thermodynamic dominance of a
direction of the reaction and the maximum corresponds to ynique backbone conformation. To this end, other reaction
the transition state. The concept of reaction coordinate is coordinates (order parameters) were proposed. Bryngelson
highly nontrivial, as it provides the relationship between and Wolynes useg—the fraction of amino acids in their
equilibrium properties such &s(X) or F(X) and kinetics.  native conformatiorras an order parameter to measure the
The transition state is a kinetic separatrix that divides the degree of folding. Motivated by the analytical theory of
direction of the reaction from going toward products to going heteropolymerg Shakhnovich and Karplus (SK) introduced
toward reactants. Theoretical treatment of simple chemicalin a series of papetsiétwo order parameters as candidate
reactions along well-defined reaction coordinates within the reaction coordinates. One is the total numbeamfcontacts
framework of the transition state theory or, for diffusive between amino acidsa parameter similar to the total volume
dynamics, Kramers theory had been very successful. Thereof the molecule. It reports on the overall compaction of the
fore, the appeal to pursue the chemical reaction analogy formolecule regardless of whether it is folding to the native
protein folding is in the availability of a well developed state or just a collapse to any of the misfolded compact
theoretical formalism that can immediately be applied to the conformations. Another, much more specific and important,
problem at hand. However, the success of theoretical reaction coordinate introduced by SK @ which is the

treatment of chemical reactions in simple molecules hinges fraction ofnative contacts in a conformation. This parameter
heavily on the mere existence and proper selection of reactionjs defined as

coordinates. While this problem is relatively straightforward

for simple molecules, it becomes formidable for complex N
multiparticle systems such as proteins. The obvious difficulty Q=
here is that, unlike simple molecules, proteins are systems

with many degrees of freedom. The implication of that is

twofold. First, the “raw” energy landscape view is not where Npave iS the number of contacts in a conformation
helpful anymore because now such a landscape is extremelythat are also present in the native state, Hpd, is the total
multidimensional and is not conducive to meaningful in- number of contacts in the native state. At present, the SK
sights. The possibility of a meaningful low-dimensional reaction coordinat® appears standard in most publications
projection of the energy landscape is contingent on the using the “chemical reaction” protein folding analog§:1"118
existence of an identifiable reaction coordirass extremely The “free energy landscape” fdD, i.e., F(Q), was first
nontrivial and yet unresolved problem (see below). Second, obtained for the lattice model via thermodynamic sampling
unlike simple chemical reactions, entropic contributions are by Sali et al** These authors introduced a version of the

native

N

total
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histogram method that provided the density of states as aensemble of conformations that is defined dynamically: as
function of energye andQ from equilibrium sampling. Sali having probabilitypriq = /2 to fold and¥, to unfold? The
et al. derived the density of states for the protein model basedadvantage of the “phase transition” analogy is that it gets
on a straightforward observation that the native state in this physics right; that is, from the beginning it recognizes the
model is unique, i.e., that the density of states at the native crucial role of entropy, along with energy, in determining
energy is strictly 1. Sali et al. also obtained the thermally the kinetics mechanism. The difficulty is that there is no
averaged energy as a function @fand the entropy as a  universal theory of kinetics of first-order phase transitions
function of Q. They identified conformations & = Q* and many aspects of it are very system-dependent so that
whereF(Q*) is a maximum at transition states and estimated exploiting this analogy does not bring us automatically to a
their number from the same histogram technique. A gener- satisfactory theory of folding kinetics.
alization of this approach to more than one order parameter \yhich analogy-chemical reaction or phase transition
was proposed by Dinner and coauthsfs. is more helpful? While the answer to this question may seem
The paper by Sali et &l caused some debate in the to be subjective, reflective of an individual's scientific
literature (see critique and response to it in ref 120). The background (the chemical reaction analogy is familiar to
authors of a subsequent publicafibiconcurred with the  chemists and biochemists while the phase transition analogy
criticism of Sali et al'! offered by Charf? Nevertheless, they  is more natural to physicists), there is a significant difference
adopted many of the approaches first introduced by Sali etbetween the two in terms of the predictions that they make.

al. (the order paramete®, the histogram approach @Q First, the chemical reaction analysis using the SK order
sampling), and in their Figure 5, they obtainé(), E(Q), parameterQ as a global reaction coordinate predicts that
and SQ) plots for a SI_mIIar (but not |de_nt|cal) lattice 27-  parriers for protein folding are proportional to chain length
mer model that are virtually indistinguishable from those p ggthat folding time scales with chain length as eay''’
presented in Figure 4 of Sali et ‘@ Both Sali et al. and  The pycleation mechanism developed within the phase
Socci et al. found, not surprisingly, tha(Q), YQ), andE(Q) transition analogy predicts folding time to scale as eX30)
plots are very temperature dependéifQ) is a two-minima gt the midpoint of the thermodynamic folding transitiéh
function corresponding to native and unfolded states and o detailed analysis of experimental data carried out by
cooperative barrier crossing between them at some temperfjnkelstein23124 at the transition midpoints and Go model
ature.E(Q) is a smooth monotonic function at high temper-  gjmulations by Takad& definitely support the expiN?3)
ature and is less monotonic with an additional pronounced scaling (a virtually indistinguishable exp’?) scaling was
m@nimum at lowQ corresponding to a populated Iow-e_nergy proposed by Thirumal&612). At the conditions when the
misfolded state at low temperature. Further, Socci et al. pative state is stable, the nucleation mechanism would predict
consideredQ as a reaction coordinate for the Kramers that the folding barrier is entropic due to the loop closure
equation formalism for th&(Q) profile to study the kinetics entropy lost upon formation of a specific nuclég&2owhich
for this model. The Kramers-equation-based approach wasjmpjies much slower scaling of the folding time with chain
further developed in ref 117 and reviewed in refs 3 and 118. length, as a power law#, which was indeed observed in
An alternative kinetic analogy is that of a phase transition. simulationd?® and is also not inconsistent with experiment.
Since folding is a cooperative process akin to a first-order Thus, we see that the straightforward chemical reaction
phase transition, our understanding and intuition about approach based dp as a reaction coordinate fails to predict
kinetics of phase transitions (with the caveat that an correct and physically meaningful chain length scaling of
intrinsically small system is considered) could provide some the protein folding time. Why? To understand that, let us
guidance into the folding kinetic mechanism. This analogy consider a simpler problem: condensation of vapor into
was recognized and exploited by Abkevich etah defining liquid. One can consider a natural global order parameter
the folding nucleus as minimal fragment of a new phase reaction coordinatewhich is a bulk densityp. The “free
(folded state) that inevitably (i.e. without recrossing back) energy landscapée?(p) will feature two minima (liquid and
converts into the folded state. Thinking along these lines vapor) with the maximum at some= p* reflective of the
helped researchers to focus on the important question offirst-order character of the condensation transition. The
whether the folding nucleus is specifite., whether this  Kramers equation or transition state theory approach will
minimal fragment of the new phase is the same or similar identify states witho* as the TSE and will predict the rate
in all folding events or is random and varies from folding of condensation as expl), eventually making any liquid
event to folding event (but its size may need to exceed somecondensation event impossible for kinetic reasons, in stark
critical value). As pointed out earlier, kinetic analysis carried contrast with our everyday experience. The reason for such
out in ref 98 and many subsequeékihetic studie§®1°? of a failure of the reaction coordinate approach is clear: While
the folding transition supported the specific nucleus view, usingp—the spatially uniform, average densitgs an order
as did many experiments. The phase transition view was parameter is fully justified to study the thermodynamics of
further discussed by Pande and co-workét$:inkelstein the liquid—vapor transition in the mean-field approximation,
and co-workerg* 123 ysed the phase transition view to it cannot serve even as a basic approximation to study
analyze the dependence of folding kinetics on length and kinetics® We know that transition states for condensation
temperature. Putting the analysis of the folding reaction are qualitatively different from having a uniform intermediate
firmly on the ground of established facts and theories about density p*. Rather, it is a set of fragments of a new phase
first-order phase transitions, these authors further demystified(that appear due to fluctuationsjvater droplets-in the sea
protein folding cast in terms of the Levinthal paradox. of the “old”, vapor phase. However, certain aspects of
While the chemical reaction analogy organically focuses transition state theory will be applicable to calculate the rate
on the transition states for the folding reaction, the key in ©f forming of such water droplets.
the phase transition analogy is also the transition state, but Another difference between the two predictions following
with its emphasis on entropy, it focuses on the TSE, i.e., the from the two approaches is in the nature of the transition



1574 Chemical Reviews, 2006, Vol. 106, No. 5 Shakhnovich

state ensemble. The kinetic approach predicts a specificmechanism for understanding the self-organizing principle
nucleus for many modetsfrom lattice models to all-atom  of sequencestructure relationship”. Similarly, several other
protein simulation§8192.130|n contrast, the reaction coordi-  authors view the folding funnel as a kinetic concept. David
nate approach, which identifies the TSE as a set of Wales in his textbook® writes, “The set of monotonic
conformations corresponding to the maximum of E{(&) sequences that lead to a particular minimum was termed a
curve obtained from equilibrium sampling, does not find a ‘basin’ and in this sense a ‘basin’ is analogous to a ‘folding
specific nucleus for lattice model proteifid.Why would funnel’ described in terms of a collection of convergent
two different approaches give different answers to the samekinetic pathways...” (p 246). Similarly, Ozkan and coau-
question about the specificity of the nucleus? The issue herethors*® present funnels as a kinetic concept. These authors
is whether the putative TSE identified in the reaction studied a simple 2-dimensional lattice model and concluded
coordinate approach is a true TSE, that is, a kinetic separatrixthat “folding in this model is fast, multichannel, and funnel-
between folded and unfolded states hayipg = /2. While like in the sense that conformations are fed by higher energy
some authors answered affirmatively to that question for conformations and pour into lower energy ones...”
idealized Go models of proteii&-132there is considerable The key prediction of the “folding funnel” theory of

evidence that this is not so for more realistic, sequence—baseq_eopo|d et a3 s that some sequences cannot fold due to
i J83-136 A .. N . . .

and all-atom models with transferable potent®fS*15°For inatic inaccessibility of their native structures despite the

further analysis of the relation between geometrical properties ¢, that they may be thermodynamically stable in them. This

and the location of the k7|net|c separatrix, see the work of jyieresting prediction potentially suggests another selection
Brezhk_ovsku aqd Sz_at_ﬂé. . criterion for protein structure. While the work of Leopold et

In this author’s opinion, the Kramers equation approach g gjig not provide an estimate of how severe this requirement
to the kinetics on thé(Q) landscape is very problematic. s (j e which fraction of 27-mer structures is kinetically
The reason for our judgment is that the original Kramers inaccessible), the one example that they providedan-
equation is derived from the underlying dynamics given by o1y chosen sequence whose native state was deemed
the Langevin equation, where noise is uncorrelated with the yinetically inaccessiblesuggested that perhaps a significant
coordinate and when the fluctuatiedissipation theorem fraction, if not a majority of structures, may be kinetically

EOI?S' TOI the dbfest or:‘ our kncijv_vledge, I’(le S#Ch fdynarfnlcz CaNinaccessible and only some special ones would be accessible.
e formulated for the&Q coordinate and, therefore, funda- hqeed in the opposite case, when a majority of structures
mental relations such as the one between potential and force, o yinetically accessible, the kinetic accessibility as a
that form the basis of Langevin dynamics and the Kramers gg\qtion criterion would be irrelevant.) However, in lattice
equation do not hold in that case. Therefore, while formally 1o cimulations carried out over the past 15 years, we

EIhe dKrame“rs.te%ua;io? Ct";‘]n be pr(tashentgq for E(t@) and others did not encounter a single kinetically inaccessible
aln scape’, 1ts h(?lISISh 0:1 be casfe ah an h|sbuncer an. 1 lattice structure for a 27-mer as well as for longer chains.
n summary, while the debate of what IS the best approach g oy ample, the study in ref 141 addressed the question of

to theoretically describe protein folding kinetics is ongoing, how folding rate depends on chain length. To that end

itis this autho_r’s opinior) th"’.‘t a “physical” app“?"?‘Ch based folding into 20 randomly selected lattice structures with chain
on the nucleation scenario within the phase transition analogylengths in the range of 18100 units was studied using the

is more physically“ sound than a “(?,her_nical” appfoaCh sequence design procedure described in section 3 (this work
motivated by the "energy landscape” picture of simple o he viewed as a “high-throughput’ version of the
chemical reactions. While the latter certainly claimed some computational experiment presented in Figure 2), and no
success in quantitatively reproducing folding rates, failure lattice structure was found to be kinetically inacéessible.

to get it qualitatively right (e.g. incorrect chain length scaling) Similarly, the study of 200 random sequences by Sali et al.

perhaps diminishes the success of quantitative agreements, : ; - o
However, in all fairness, a fully satisfactory folding kinetics showed that the energy gap is a single predictor of the ability

theorv i matter of the future. not th t and w N of a sequence to fold regardless of its native structtire.
eory IS a matter of e future, not the past, a € €an others (see, e.g., refs 142 and 143) folded numerous lattice
only guess its form and source of inspiration.

structures using the same design-folding approach as high-
4.3. Folding Funnels lighted in Figure 2, and they did not report instances when
A note on the widely used concept of folding funnels kmeucallymaccess[ble structures were encountered. Tha_t is
follows. The term “folding funnel” was introduced by not to say that folding rate does not depend on the native
Leopold et al® in the framework of a conceptually novel structures at aII:6 3sl$g/iral researchers_, fc_)und and discussed such
suggestion that some native structures may be kinetically & dependencé:®*+41“However, variation of rates between
accessible while other native structures may not be. Thesedifferent lattice native structures was found to be within
authors studied two sequences of lattice 27-mere that ~ aPProximately an order of magnituéé;**“i.e., well within
folded into a special structure and a random sequence. Thdhe normal folding rate variation for natural proteffs.
first one was able to fold in 500 000 Monte Carlo iterations  Another, perhaps more widely used (or assumed), meaning
while the second one was not. Leopold et al. explained this of a folding funnel is that of special properties of the energy
difference by lack of kinetic accessibility for the second landscape presented as the energy of a prdésa,Xs,...)
structure. The kinetic accessibility criterion was defined in projected into a small set of coordinatés!4’In their model,
ref 138 as the requirement that a “folding funrnell set of Bryngelson and Wolynes presented mean energy as a
interconvertions between maximally compact 27-mer struc- function of fraction p of amino acids in their native
tures—that leads to the native statexists for a given  conformatiorf Sali et al*! projected the energy surface of a
structure. Leopold et al. state that “convergent kinetic model protein on the SK order paramef@using sampling
pathways or ‘folding funnels’ guide folding to a unique, and a histogram technique as explained above (Sali et al.
stable native conformation”. In the same vein, they concluded also presented the(Q) and Q) functions). In both cases,
that “we introduce the concept of ‘folding funnels’, a kinetic the resulting effective energy depended on temperature.
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The concept of folding funnel, or “funneled landscape”  However, the key issue with “landscape funnels” is that
in this “landscape” version, is a statement that such a the relation of “funneled” (or “nonfunneled”) landscapes to
projectedE(X) function is monotonic, pictorially resembling  folding kinetics is entirely unclear, as explained in the
a “funnel”, perhaps with some fine structure reflecting its previous chapter. This is again dramatically illuminated by
“ruggedness®® In some cases, the terms “smooth funnel” Ozkan and co-workerd? Looking at the energy landscape
and “rugged funnel” are used to highlight certain intuitive for their 16-mer Go model (Figure 9 of ref 140), one would
aspects of thé&(X) function. For example, the Bryngeslon immediately infer a trap-dominated complex folding scenario
and Wolynes functiofie(p) is always smooth, monotonically  resulting in nonexponential kinetics (the relation between
decreasing, and the Sali et al. functiB(Q) was perfectly traps and nonexponential kinetics was rigorously established
monotonically decreasing or “funneled” at high enough inref 98). However, the actual kinetics observed is perfectly
temperature even for random sequences. This is not surprisexponential, and the detailed kinetic mechanism revealed by
ing since both functions represent potentials of mean force the master equation approach could not have been inferred
and their monotonic behavior follows from general thermo- looking at the “energy landscape” for the model. The study
dynamic rules. of Ozkan et ak*® puts the utility of the “energy landscape”

This interpretation of a folding funnel is intuitively perspective for protein folding kinetics into question prima-

highlighted by the cartoon representation of “folding funnels” fly because energy landscapes do o!‘epend dramatically on
that can be found in the literatut®. Axes are usually not  the choice of coordinates in which the “landscape” is plotted.
labeled in cartoon representations; that is, the coordinates! he coordinate of choice should be a “true reaction coordi-

Xy, X, ... are not specified. However, selection of coordinates Nate” (TRC). In this case, free energy gradients will be

to present a “folding funnel” (in its second, “landscape”, indicative of the direction of the folding process, as explained
interpretation) is a key issue, and the results depend crucially@Pove; however, such a TRC is not known, and even its mere
on how coordinates for thE-projection are selected. This ~€Xistence is a matter of debate. A candidate for the TRC,

issue is highlighted in the work of Ozkan and coauthiéts, —the SK parameteQ, advocated by some researchéfsyas
who studied the folding mechanism of a simple 2-dimen- shown to bt_a inapplicable even for_a relatively simple peptide
sional lattice 16-mer within the Go model approximation of with realistic transferable potenti&® 26 Therefore, unless
energetics. Go models are deemed to be archetypical “smoot{’€ TRC is found, the “landscape funnels” will remain a
funnels”1%8 Indeed, if energy is plotted vs SK reaction highly arbltrar_y_and perhaps misleading con“c<_ept. _On the_other
coordinateQ (the number of native contacts), tR¢Q) is a and, the utility of the concept of ;he kinetic fo[d_mg
perfectly monatonic function (by definition), indeed invoking funnels” advocated by Leopold et‘f.hinges on the ability
associations with a “funnel-like” landscape. However, the to define kinetic connectivities in protein _models of realistic
authors of ref 140 used another set of coordinates obtainedSiZ€ and assumptions about the dynamics of the system.
from principal value decomposition of the conformational W€ showed in this section that there is a significant
space of the 16-mer. The first two principal axes were used Variance of opinion in the literature as to what “folding
to create theE(Xy,X,) surface, and the result is that this funnel” is. Unfortunately, until the community converges on
surfacefor the same Go modés extremely rugged, or as @ clear definition of the “folding funnel”, the use of this term
the authors of ref 140 put it, “Using the singular value IS bour_ld to generate a significant amount of unnecessary
decomposition we show an accurate representation of theconfusion.

shapes of the model energy landscapes. They are highl . , ,
Compp|ex funnels”. ¥ P Y 94 4. Structural Determinants of Protein Folding

So, for the same simplest 16-mer Go model, a funnel can Rate: Contact Order and lts Alternatives
be “smooth” (if the SKQ coordinate is used) or “highly The accumulation of experimental data stimulated the
complex” (which even does not visually resemble a funnel search for empirical correlations between folding rate and
if the coordinates of Ozkan et al. are used). Furthermore, in structural properties of proteins, and some were found indeed.
a recent study?® Krivov and Karplus show that the projection One of the most interesting of them is relative contact order
of the energy function on preselected coordinates may be
grossly misleading as it conceals the true complexity of the .
conformational space and the physics associated with that. N Z(J — 1)
The authors state that “...the standard funnel picture of protein RCO= (4.2)
folding should be revisited”. In the same vein, Caflisch o N '
argued that projection of the (free) energy landscape into a

specific coordinate (in his case S) can be misleading®® (whereN, is the total number of contacts between amino
He showed, for a small peptide, that such a projection groupsacids in a protein is the total number of amino acids, and
together structurally and kinetically different conformations {he sum is taken over all (properly defined) contacts between
by mixing, for example, in the sam@-bin, conformations  aming acids), which was shown to be a good predictor of
from native, denatured, and transition state ensentbfles.  fo|ding rates for several proteid®More recent experimental
Another complication is that, for a complex system with studies found numerous exceptions to that correlation both
many degrees of freedom, free energy rather than energyfor mutants of already studied proteiflsand for several
determines, in principle, the folding process. In this sense, newly studied oné&?1%3(some many orders of magnitude
the E(X) graphs may not be reflective of the folding process off the predicted raféd. It was shown in the original
at all! The entropic part of the free energy in this reduced publication that relative (i.e. normalized b} contact order
representation comes from sampling over all degrees ofas given by eq 4.2 is a good predictor of folding rate.
freedom unconstrained by selection of projection coordinatesHowever, in a more recent revision of the concept published
X. This makes such “landscape funnel” plots also dependentby the same authors, it is now argued that absolute contact
on the temperature. order (defined in the same way as eq 4.2 but withduh
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the denominator) is a good predictor of folding rates. At the tion.”®7® Therefore, residues that ameore consered than
same time, other, more simple structural determinants suchexpected from buriedness factor alosme under additional

as the fraction of localand nonlocal, long-range contaéts pressure, besides stability. Thus, universally conserved (in
were argued to be equal, or better, predictors of folding rate. all protein families having given a fold) residues that are
A comparison and analysis of various predictors for a set outliers (toward higher conservation) from the buriedress
of 18 proteins was recently made by Kuznetsov and conservation correlations are good candidates to represent a
Rackovsky'® These authors argued the following: (1) folding nucleus for a fold in question. However, one has to
Values of the correlation between folding rate and contact be careful in estimating conservation, because here com-
order are very data set dependent: values as high as 0.8parison is made between proteins having the same fold but
for 12 proteind® or as low as 0.64 for 18 proteit¥§ have vastly different sequences so that naive multiple sequence
been reported. (2) A highly significant correlation between alignment between them is not possible. Rather, one has to
log(k) and secondary structure content has been fé¥hd. determine conservation profiles within families of homolo-
(3) Both strength and distribution of the interactions have gous proteins (i.e. within each minimum in Figure 3) and
been shown to play an important role in determining folding then, using structural alignment, compare conservation
rates!>® However, contact order is a purely geometric profiles to determine which positions appear taibeersally
property and does not account for these factors. Further,conserved. Of course, identities of universally conserved
Kuznetsov and Rackovsky showed that sequence-basedesidues may vary from family to family, as shown sche-
determinants such as the propensity to form various typesmatically in Figure 3; it is the fact of their universal
of secondary structure can serve as equally good determinantgonservation in corresponding structurally aligned positions
of folding rate*** lvankov and Finkelstein proposed a similar - (see Figure 3) that determines their possible special role as
sequence-based predictor of folding rates also based orpelonging to the folding nucleus. The detailed analysis of
secondary structure propensiti€$.Apparently, a further  thjs property, called conservatism of conservatism (CoC) in
objective study that takes into account all available data is ref 79 provided predictions for the folding nuclei in five
needed to clarify which structure-based or sequence-base¢ommon folds. In some cases, such agp) plaits or
parameters (if any) can serve as a unique and most reliablerossman folds (CheY), the folding nucleus was already

predictor of folding rates. determined from protein engineering analysis-v@l-
ues}jo4162.163nd the predictions are in good agreement with
4.5. Evolutionary Traces of Nucleation experiment. In other cases, most prominently for Ig-fold
Mechanisms. Conservatism of Conservatism proteins, the CoC analysis predicted precise locations of the
Analysis nucleus residues for all proteins having that f6liVe noted

in ref 79 an interesting phenomenon of “circular permutation”

An important observation was made in ref 98 that location ©f @mino acids in the Ig-fold nucleus. We found that the
of the folding nucleus in the structure is conserved between folding nucleus always contained a 100% conserved tryp-
many model proteins that folded into the same structure tophan residue, but its location in the nucleus varied from
despite having very different nonhomologous design se- family to fam|ly as if nucley_s residues were maklng circular
guences. Experimental studies of nucleation in nonhomolo- Permutations upon transition from one family to another.
gous proteins that have similar structures arrived at similar AlS0, in some cases, strong hydrophobic contacts in the
conclusiong5%-161 These results provided the basis for the nucIeL_Js observed in one family were replaced by a disulfide
“structure-centric” view, according to which any folding Pond in another family. In a series of papers, Clarke and
potential (including Go) that leads to folding into a given coauthors studied experimentally folding nuclei in the Ig-

structure would provide a robust picture of the pathway, fold family of proteind®*1%and found that indeed the folding
including the location of the nucleus. nucleus appeared conserved between different proteins of

The observation that the folding nucleus is conserved this superfamily argld that its location was in agreement with
earlier predictiongs

between proteins belonging to the same fold has an interest-
ing possible evolutionary implication. Indeed, if one assumes It is still a subject of considerable debate as to whether
that evolutionary pressure was exerted to control folding ratesprotein folding nuclei are under additional evolutionary
(e.g. to prevent protein aggregation from happening before pressure as it is posited here. While such a suggestion was
proteins fold), then folding nucleus residues, being “ac- made by us in refs 78, 79, and 141 and was used there to
celerator pedals” for folding, are under universally stronger successfully predict folding nuclei in several proteins, Plaxco
selective pressure in all proteins of the same fold (but not and coauthors argued against®ft.These authors sought
necessarily the same function). This hypothesis suggests argorrelation betweernp-values and sequence entropy in a
approach to detect folding nuclei from bioinformatics simple multiple sequence alignment and found it for some
analysis’®" The issue here is that residues in proteins may proteins but not for others. In response, Mirny and Shakh-
be conserved for various reaserftheir importance for novich®” argued that evolutionary pressure on folding nuclei
stability, function, and interaction with other proteins and, is in addition to other selection pressures such as ones for
perhaps, their role in folding kinetics. How can we distin- stability and function. To this end, a careful CoC anakjsts
guish between these different factors? Insight comes fromis necessary to detect such additional pressure. A simple
two observations: First, proteins having similar structures multiple sequence alignment used in ref 166 would likely
but very different sequences and functions still may have fail to detect additional pressure on folding nuclei. In
similarly located folding nuclei. That allows one to rule out response to that, Plaxco and coauthtsyhile emphasizing
functional conservation by properly comparing proteins with the specific nucleus scenario of protein folding, essentially
differently located active sites/regions. Second, the conserva-reiterated their original argument based on the analysis of
tion for stability manifests itself in a very strong correlation multiple sequence alignments, making another round of
between residue buriedness in the structure and its conservarebuttals redundant.
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4.6. Topology-Based Folding Models of the model makes believable the theoretical conclusions
that go beyond direct experimental observation. However,

X ; ; in this case, the models assume mechanisms that are difficult
observations motivated the development of a class of highly 1 yerify, such as two stretches of native structure separated

simplified models that allowed a detailed analysis under an by no more than one disordered loop. Karanicolas and
extremely limiting set of assumptions. One of such assump- grooks pointed out that such models may not provide a
tions is that a conformation of a model protein should consist qiaple microscopic mechanism of protein foldiHg.A

of two contiguous "native” parts separated by no more than 4 estion then remains as to what one learns from oversimpli-
one disordered fragmeft1%°1"°Nevertheless, analysis of  fiaq models.

the putative transition states (identified as maxima of low- _ _

dimensional free energy projections) in such models revealed4.7. Brief Note on Experiments

some consistency with reality, as found in comparison of  on the other hand, remarkable progress has been achieved
“predicted” ¢-values with experimental ones. Overall, itis  gver the last several years in experimental studies of protein
sometimes difficult to judge the measure of success of thesefo|ding. More advanced experimental techniques were de-
analyses because in many cases the actual residue-by-residugs|oped that allowed researchers to significantly extend the
predictions ofp-values were not reported. Another important ime resolution of their kinetic experiments to low micro-
control that needs to be done is a test of whether predictedgeconds, using such approaches as laser T-jump and continu-
correlation is much better than trivial null models, such as ous-flow175176Single-molecule techniques are used to probe
correlations betweegrvalues and the buriedness of an amino folding thermodynamics and kinetié&~179 These and many
acid in the structure or the number of contacts that an amino gther experimental studies provided a much more detailed
acid makes in the native conformation. experimental view on protein folding temporal and spatial
Plaxco and co-workers;-?proposed the so-called “to-  progression that either overcame or has the potential to
pomer search model” (TSM). A basic assumption of the TSM gvercome such traditional limitations as loss of information
is that the rate-limiting step in folding is an essentially due to ensemble averaging or lack of time resolution to detect
unbiased, diffusive search for a conformational state called intermediates or properly evaluate burst phases. To this end,
the native topomer defined by an overall nativelike topologi- the discussion between Roder’s group and Baker's group
cal pattern. concerning the intermediates in protein G folding is note-
A comprehensive analysis of the feasibility of the TSM  worthy: while Baker's experiments using traditional stopped-
was presented in a recent work by Wallin and Chéithese  flow equipment and W43 fluorescence as a single probe
authors examined key conclusions of the TSM using revealed no intermediaté®the use of a more time-sensitive
extensive Langevin dynamics simulations of continuum C  continuous-flow apparatus made it possible to discern major
chain models. A careful determination of the probabilities on-pathway folding intermediaté%Furthermore, a careful
that the native topomers are populated during a randomanalysis of Chevron plots for several proteins carried out
search, as the TSM posits, apparently fails to reproduce therecently by Kiefhaber and co-workers revealed slight yet
folding rates predicted by the TSM, with discrepancy noticeable curvature in the unfolding branch which can serve
reaching for some proteins up to 70 orders of magnitude. as evidence of transient intermediates or multiple transition
Not surprisingly, simulations in ref 173 indicate that an states as well as the possible effect of mutations on the
unbiased TSM search for the native topomer amounts to aunfolded statd8.182Similarly, Clarke and co-workers ana-
Levinthal-like process that would take an impossibly long |yzed the nonlinearity of Chevron plots in several Ig-fold
average time to complete. Furthermore, Wallin and Chen proteins and concluded that its most likely origin is in the
argued that intra-protein contacts in all native topomers existence parallel folding pathways passing through distinct
(which are predicted to be transition states in the TSM) transition states and that denaturant may shift the dominant
exhibit no apparent correlation with the experimeitalal- pathway!83 The work of Radford and co-workers on helical
ues for these proteins. bacterial immunity proteins also revealed complex pathways,
This analysis of Wallin and Chan teaches us several including intermediates stabilized by non-native interactions
important methodological lessons. First, it shows that in in some of them and the possibility to change the complexity
protein folding, as in any other field of science, the models of a folding pathway via mutation$* Further insights into
must be as simple as possible but not simpler. Second, ita detailed picture of the protein folding landscape can be
shows that a partial success of a model, in this case obtained from AFM pulling experimeris:-18that the probe
phenomenological correlation between a structural parameterfree energy profile along complementary reaction coordi-
(inthe case of the TSM, the number of long-range contacts) nates. In a recent work, Marqusee and Bustamante used
and an experimental observable (e.g., folding rate), while optical tweezers to induce complete mechanical unfolding
encouraging, may not serve as a proof of validity of a model. and refolding of Rnasef’ A great advantage of optical
Rather, a model must be physically consistent and be tweezers over AFM is that they allow a much slower rate of
consistent withall available data, or at least if partial pulling, making experimental conditions closer to equilib-
inconsistencies do exist, the model must offer an explanationrium. That allows experimentalists to better relate single-
for them. While these simple recipes may seem trivial, they molecule results to bulk experiments and simulations,
are not always easy to follow when such a complex processopening an exciting possibility to observe experimentally
as protein folding is modeled. transitions in single molecules that so far could be seen only
On a more general note, a question arises as to the utilityin simulations.
of oversimplified topology-based models. The role of theory . . -
in protein fglding is?o p%’vide insights into thermodynamic, 4.8. T.O.W&rd a Microscopic Description of the
kinetic, and evolutionary mechanisms that are not directly 17ansition State Ensemble
available from experiment. The agreement with experiment  This brief and by no means complete account of recent
is necessary to validate the model’s assumptions. Validationexperimental work in protein folding nevertheless illustrates

The RCO correlation with folding rate and related
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impressive advances that provide detailed structural informa-(in terms of number of Monte Carlo steps) and experiments

tion about many aspects of folding mechanisiewever, where such data are available. That included the second
at this point, experiment probably reaches the limit of its S-hairpin from protein G, whose folding rate is known from
ability to provide structural insights without simulationghis experiments by Eaton and co-worké?sas well aso-heli-

calls for very accurate computational models that match the ceg®* and several small proteins. In all cases, the observed
precision of experimental information and allow unambigu- folding rates were highly linearly correlated with experi-
ous structural interpretation of experimental data. Of special mental ones and the results on dynamics of hetiail
importance is structural characterization of transition state transitions were consistent with MD simulations data and
ensemblesturning points (dynamic separatrixes, see above experiment®292203These results provided sufficient evi-
and refs 99, 137, 188 and 189) on the free energy landscapealence that the developed technique is accurate enough to be
from which a protein is committed to fold. useful for modeling folding mechanisms of small proteins,

Structural description of the TSE is impossible without and we embarked on the studies of protein folding at an
simulations because it corresponds to an unstable state whosatomic level of detail. The first protein that we studied,
experimental detection is very difficult. While ingenious Crambin, was mostly a proof-of-principle study that showed
experimental approaches based on protein engineeringthat, using atomic potentials that include realistic steric
methods provide extremely valuable information about interactions and contact Go ateratom potentials, we
possible interactions in the TS&,162a structural model of ~ obtained numerous successful folding trajectories, for real
the TSE can be obtained only from high-resolution simula- proteins, at the atomic level of detail, using available
tions. However, full folding simulations to determine the TSE computational resources. Nevertheless, even this first study
ab initio are difficult for many proteins (see, however, refs provided strong evidence about the complexity of folding
130, 190, and 191). To this end, approaches that incorporatepathways and the relative role of energetic factors and
experimental data, such gsvalues, into simulations have backbone and side-chain geometries in defining folding
been proposed by several groups. pathways.

The Daggett group employed unfolding simulations analy- The next major undertaking in this direction was to
sis based on the premise that unfolding is the microscopic simulate complete folding of a protein that has been well-
reverse of folding, This assumption was questioned by characterized in experiment, the Ig-binding domain of
several authot8219% who showed that unfolding when staphylococcal protein & This protein appeared to be an
simulated at different conditions from those of normal folding ideal model, as it is relatively short and is relatively fast-
experiments may not represent the direct inverse of folding. folding (3—5 ms), and there is a plethora of experimental
Such differences in simulation conditions may result in data to compare witf.182%4This project presented us with
significant differences in observed pathways. Nevertheless,numerous challenges, including the need to carefully calibrate
Daggett and co-workers found that their proposed models short-range potentials (mostly H-bond) relative to long-range

of transition states are consistent with experimepaalues, Go energetics. This was accomplished by setting the strength
and in some cases, they were able to predict mutations thatof nonspecificoackbone hydrogen bonds to comply with
significantly affect the folding rate in some proteiti$. thermodynamic data on the stability isblatedelements of

the protein G secondary structure.
4.9. Insights from Simulations of All-Atom Go The simulatio®®® revealed a complex picture of protein
Model Proteins G folding that entails parallel pathways converging to a

) ) ) common transition state ensemble (Figure 6). The transition
While the successes of some of the all-atom simulations giate ensemble contains a specific nucleus of six hydrophobic
are encouraging? they are still limited to very short proteins  yesjdues, consistent with the general picture of the nucleation
folding, and sometimes rely on a very small number (less pgjgw).
_than 10) of trajectories. At an intermediate Igavel of complex-  This study taught us several lessons, the most important
ity, Go models of various degrees of detail proved useful. ¢ \yhich are that ensemble averaging (as is done in most
As we said earlier, in the Go model, only interactions gyneriments) and selection of the experimental probe/reaction

3,196 30,197,19 i i R . L g
between groups***or atoms %that are neighbors in  cqqrdinate (e.g. W43 fluorescence) may significantly affect
the native state are treated as attractive in any conformationhe apnarent picture toward sometimes misleading conclu-

The benefit of such models is that they “solve” the folding ' gjons. |t emphasizes a crucial role that simulations must play

potential problem by gu_aranteeing_that the correct nati\{e statey, interpreting experiment“Only theory decides what we
is a global energy minimum. Their obvious shortcoming is manage to observe” (A. Einstein).

that knowledge of native structure is needed in order to build

such potentials, and alsog}éhﬁy may underestimate non;]'”5‘“"34.10. Using Experimental Constraints To Obtain
Interactions in some case€sS.However, in many cases, they -, Folding Nucleus at Atomic Resolution

are the only potentials that allow full folding simulations
from random coil to native state and, as such, provide The results of the most structurally informative protein
extremely detailed insights into folding mechanisms for engineering methdé are often “visually” interpreted as
model proteins. Following this route, we developed a novel “high ¢-value residues belong to the nucleus, while low
and powerful toot-all-atom Monte Carlo dynamic simula- ¢-value ones do not”. Such reasoning is qualitatively
tions!®” The method takes into account all heavy atoms of acceptable in some cases but sometimes misleads. For
the protein and uses a move set consisting of a combinationexample, 176 in chymotrypsin inhibitor 2 (Cl12) shows a low

of local and nonlocal moves. Calibration of the move set ¢-value in many mutation®* however, a careful double-
appeared to be a major undertaking that included comparisormutant study attributes it to folding nucle#f8.In another

with dynamics of short peptides undergoing the hetwil example, of protein G, the highegtvalues are observed in
transition and comparison of rates observed in simulationsthe turn of the second hairpin, whilg-values in other
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Figure 6. Mechanism of folding of small protein G as derived from all-atom Monte Carlo ensemble folding simulations with the Go
potentialt3® Parallel pathways through various heliRairpin intermediates converge to a common nucleation step that leads to a final
folding step. (Reprinted with permission from ref 130. Copyright 2002 National Academy of Sciences, U.S.A.)

locations are noticeably lowé# While this observation In particular, it clarified a number of key issues related to
points out the importance of the hairpin, it is hard to imagine the ¢-value analysis:

a TSE (i.e. a set of conformations wifls = 0.5) where (A) What is the minimal number op-value constraints
only one hairpin is folded while the rest of the protein is to enable reliable reconstruction of the TSE?
not. (B) What is the relation between tigevalues of residues

The qualitative character of the “visual” interpretation of reported in various mutations and their role in forming the
the protein engineering method was noted by Fersht andTSE?
Daggett;®® who insightfully pointed out thag-values should The all-atom simulation of protein & provides some
be treated as experimental constraints akin to NOESY in the answers to these questions for that protein. In particular, it
NMR determination of protein structure. This idea was was shown that upon gradua| additiorﬂ;ef/ajue constraints,
further developed by Vendruscéto2%8and co-workers, who the m)foldu[jjneans averaging over many Starting conforma-
usedg-values to reconstruct theutative transition state of  tions of the putative TSE, which are generated using
acylphosphataseone of the proteins studied by Dobson and constraints derived from experimengalalues following the
co-workers using protein engineering meth&ds/endrus- Vendruscolo approaéff) first grows and then saturates,
colo and coauthors reconstructed the putative TSE for thisreaching the limiting value of 0.5. Most importantly,
protein usingg¢-values as constraints in high-temperature (distribution of the pr-values over constraint-generated
unfolding simulations (using initially a reduced @odef* putative TSE starting conformations is pronouncedly bimo-
and later an all-atom representation of prot&fisHowever, dal: many conformations are found with low and higk
they did not test whether the proposed conformations and relatively few are found in between, withs = 0.5.
represent the true TSE, i.e., the set of conformations for This is perhaps not surprising because the TSE corresponds
which the transmission coefficient to the folded stat@ = to the free energy maximum; that is, it is comprised of the
0.5% least stable conformations (see Figure 7). However, this

All-atom simulations provide a unique opportunity to simple observation clearly indicates that no reliable structural
address this issue. First, we carried out the analysis of thecharacterization of the TSE withopgq analysis is possible.
TSE for CI2°%—perhaps the best characterized protein in In particular, the models of transition states based only on
terms of¢-value analysid® We showed there that-values constraints may be sometimes misleading. For example, an
correctly specify, in general, the TSEd.q[bver the putative  unverified model of the TSE for SH3 domains (based on
TSE appeared to be close to 0.5. The work presented in refconstraints only) posits that the TSE for these proteins has
209 was like a “proof of principle” both fgpiq calculations a nativelike topology and is structurally close to native state
and ¢-value analysis. Our subsequent stt¥presented a  for all three SH3 domains studiééf However, a careful
much more detailed picture of the TSE for protein G folding. analysis of the SH3 TSE that includgsy Vverification
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A Proa 0 Praa™ 0.5 Pa > 1 reached. What does? The answer to this question comes from
“ A the analysis of the differential contact map between the pre-
Y] b7 TS ensemble and the TSE, which points to contacts that are

coiled state MM
fluctuations 4

(_)H

4 commitment and native state key to the TSE, i.e., that appear only in the TSE but not
@ side chain relaxation  equilibrium before. The analysis of differential contact maps revealed

’ ' that a few key contacts are crucial for the TSE (Figure 8).
These contacts are between residues that are spread all over
the sequence but form a tight cluster in the structure. These
residues constitute thelding nucleudor SH3-folding: its
formation is key to reaching the TSE. Also, this set of
contacts, corresponding to the folding nucleus, corresponds
to a common, invariant feature among all TSE conformations.

Free Energy

population

0 p 1 _ .
;:acﬁon Coordinate i 4.11. Sequence or Structure? Insights from

Figure 7. Schematic representation of the putative free energy High-Resolution Simulations

landscape and the idea @ The transition state ensemble . . . L
corresponds to the set of conformations at the “top” of the free  ON€ Of the most debated issues in protein folding is what

energy barrier (saddle point on the free energy landscape). Passingl€termines folding pathways: final structure or protein

the top of the barrier from the unfolded to folded direction changes Sequence. While this question may sound somewhat scho-
the dynamic behavior of the folding protein: it becomes committed lastic (since sequence always determines final structure), it
to (on average) downhill folding. Folding dynamics starting from js not: there are many proteins that have similar structure
conformations on the “folded” side of the barrier always (apart from )+ very different sequences, and the relevant question is

an unlikely recrossing event) ends in the native basin; hence, for . . . -
these conformations the probability to fold is 1. On the other hand, whether such proteins have similar or different folding

folding dynamics that starts from conformations on the “unfolded” Mechanisms. This question has a long history. An early
side of the barrier ends inevitably in the unfolded state; for such indication that structure may be a more robust determinant
conformationspyig = 0. Conformations that belong to the barrier, of the folding mechanism than sequence was made in ref
i.e., transition state ensemble, have equal probability to fold and to 98. This proposal was based on a lattice model study.
unfold; for them prig = */>. A rigorous definition of the transition g psequently, several authors arrived at similar conclusions
state ensemble (TSE) is a collection of conformations having using various techniqué€212 (see section 4.4 for a more

Proid = 2. A detailed discussion of how to define and determine detailed di . £ h uti implicati f thi
Proa in realistic all-atom simulations can be found in ref 188. The detailed discussion of the evolutionary implications of this

inset shows that the ensemble distributiorpgf; is bimodal with finding). However, in some cases, the apparent exceptions
TSE conformations corresponding to the minimum probability. The to the perceived robustness of the folding pathway were
hypothetical plot here is shown along the hypothetical “reaction found. For example, in the small helical protein Im7,
Coordinat(_-','" for which the tOp of the barrier CO|nC|deS Wlth the TSE muta“ons Changed the Observed pathwﬁpm an apparent
The identity or even existence of such a reaction coordinate is not o «tate mechanism to a three-sttéolding mechanism.
known. (Reprinted with permission from ref 188. Copyright 2004 ..
Elsevier.) Slmllarly, Baker and coauthors showed that_strl_JcturaIIy
similar proteins G and L have different distributions of
presents a completely different picture: of a highly polarized ¢-values?'* suggesting that these two proteins may have
TSE with a well-defined small nucleus but with a significant different folding pathways. However, a detailed analysis
part of the chain disordered almost as much as in the based on simulations of protein G in the structure-centric
unfolded staté®1332101t should be noted that the folding Go model®® showed that certain features of the folding
nucleus in SH3 domains (as well as in other studied pathway are flexible and certain features are robust. In
proteind®21y is “diffuse” in sequenceit is comprised of particular, there may be many pathways leading to nucleus
residues that are uniformly distributed throughout the formation passing through various metastable intermediates.
sequence. However, the residues belonging to the folding This aspect is flexible, as mutations can easily shift distribu-
nucleus are well packed spacein the TSE conformations.  tion between different paths and stability of the intermediates.
This is very clear from thexg-based analysis of contact However, all these pathways converge to a single nucleation
maps in the pre-TSpkig < 0.5) conformational ensemble, step, and the structure of the nucleus is robust in the sense
the TSE frg = 0.5), and the post-TSpta > 0.5) that it is mostly determined by the final structure of the
conformational ensemble. Contact maps are constructed tgprotein (see Figure 6). Proteins having different sequences
show the contacts that are most probable in the correspondindout similar structures have very similar folding nuclei. This
ensembles. Of special importance are differential contact conclusion is supported by experimental studies. For ex-
maps between the TSE and the pre-TS ensemble (Figure 8)ample, Radford and co-workers showed that despite the fact
Apparently, such a differential contact map shows only the that two homologous helical proteidm7 and Im9-fold
contacts that are most important for the TSE: without them, via two- and three-state mechanisms, the TSE structures of
the TSE is not reached. These are the contacts that arghese proteins are very simil&® The apparent discrepancy
necessary to form in folding the TSE, i.eaucleation between results for L and G proteins obtained by Baker and
contactsThe analysis of nucleation in SH3 domains reveals co-worker$®-214can be attributed to difficulties of derivation
as an important necessary structural feature the primarily of the TSE from “visual” inspection of-values. Indeed,
central3-sheet consisting of strands-2. It is a necessary  when detailed analysis usimg,q was carried out for protein
feature because it is always present in all TSE conformations.G*88 (using experimental constraints and Go model simula-
However, it is not sufficient to form thig-strand to reach  tions), its folding nucleus appeared to consist of several
the TSE. Indeed, the sanfesheet is formed in the pre-TS tightly packed hydrophobic residues (consistent with other
ensemble. In other words, formation of the cenftalheet proteins such as SB! SH3161216C|2,104 etc) rather than a
is very important, but it does not guarantee that the TSE is S-turn, as one would naively expect based on visual
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Figure 8. Differential contact maps between the pre-TS ensemble and TSE for src SH3 domain'féigdipger panels): (a) for contacts
between geometric centers of side chains; (b) for contacts betwgato@s. The lower panels of both contact maps correspond to the
native structure of the SH3 domain. (c) Cartoon diagram of a sample TS structure determipgg #&yalysis. Residues with contact
probability changes from pre-TSE to TSE (as shown in the upper panel of part b) greater than 0.1 are shown in the space-filling scheme.
They constitute a polarized folding nucleus for this domain. (Reprinted with permission from ref 133. Copyright 2005 Elsevier.)

inspection ofp-values. The locus of the correctly determined  Further, a very promising model to study protein aggrega-
nucleus appears invariant between proteins G and L.tion and amyloidos®? was developed within the DMD
Similarly, the location and composition of the folding nucleus simulations approach. The energetics of this model is based
are invariant between the three SH3 domains (spectrin, src,on specific side-chain-like interactions combined with non-
and fyn), as revealed in a recent stdéy/Davidson and specific backbone hydrogen bonding. This is a multiple chain
coauthorg” suggest that that answer to the question “do Go model whereby the amino acids interact following the
proteins with similar structures fold via the same pathway?” Go prescription not only for their own chain but also between
is ambiguous. However, our analysis based on combinationidentical chains. The multichain Go model of Ding ef4l.

of detailed high-resolution computations with experimental provided an intriguing experimentally testable generic model
data gives a less ambiguous answer: thfatiding nucleus of amyloid fibril formation. More recently, the same model
is a robust feature of a protein and its location is determined was used by Wolynes and coauthors for their study of
primarily by its final structure. Other aspects of the folding dimerization of SH3 domains, with identical conclusions
pathway (e.g. how protein “ascends” to TSE) may be more concerning the domain swap mechari&nof aggregation
sensitive to details of sequences and change even upon singland a very similar structural model of dimers of SH3

mutations. molecules-precursors of amyloid fibrils.

In a more recent work?® a sequence-based coarse-grained
4.12. Discontinuous Molecular Dynamics (DMD) energetics model (as opposed to the structure-based Go
Simulations: Domain Swapping and Amyloids model) was developed to fold the Trp-Cage miniprotein using

) ) _ ) a DMD simulation technique. The authors of ref 226 note

A complementary simulation methedliscontinuous  {hat suceess in folding of the Trp-Cage miniprotein by this
molecular dynamicswas used in a number of studies t0 qethod and by atomistic MD simulatiof%22’ may be

explore folding mechanisms in coarse-grained models of ayibytable to specific features of the folding and energetics

folding 102192215222 This method is based on direct propaga- o this miniprotein and may not necessarily be transferable
tion of dynamics by solving energy and momentum conser- 4 other cases.

vation equations each time protein atoms interact between

themselves or with “ghost” solvent particles. Several models 4.13. Long-Time Side-Chain and Backbone

were studied within the Go model energetic prescription Dynamics —A Glassy Story

from generic compact structdfé to SH3 domait3?23to

amyloid-like aggregate®?224The analysis of these simula- The all-atom Monte Carlo simulations tool made it
tions shows that the developed picture of a specific nucleation possible to address several problems that previous coarse-
is very robust between models and simulation techniques.grained models were not able to approach due to their (over)-
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Figure 9. Schematic representation of the full dynamic process of folding that includes side-chain organization. The main nucleation
barrier is overcome first and leads to establishment of the overall fold. Subsequent dynamics includes local fluctuations of the backbone
accompanied by progressive freezing of side chains. Barrier heights are shown for illustrative purposes only and may be exaggerated and
not representative of the real situation. (Reprinted with permission from ref 234. Copyright 2003 Wiley.)

simplified character. One of them is the issue of statistics side-chain packing times even with apparent two-state
and dynamics of side-chain packirngn aspect of protein  kinetics, but side chains that constitute the nucleus are the
folding that was recognized by many as a cornerstéh&?® fastest to acquire their native conformati&fThis result
The all-atom MC simulations were used to address this was obtained in ref 234 in simulations of a new lattice model
problem. First, a direct sampling of side-chain packing states with side chains as well as in analysis of trajectories of all-
was performed to resolve a long-standing is¥8eow many atom simulations of protein G.
side-chain packing arrangements are sterically compatible
with a given backbone conformation? The analysis was
performed for several models of stericsom hard-shell to
van der Waals soft-shell steric interactiensith an unex-
pected conclusion: that many (exponential in the number
of side-chain degrees of freedom) conformations are compat- le and i moanied by backbone fluctuation
ible with a given backbone conformatié#.Naturally, this scale and 1S accompanied by backbone fuctuations (see
degeneracy is broken in real proteins by interactions so that':Igure 9).
the native conformation of side chains is energetically ~These longer-time-scale fluctuations appear to be of a
favored over alternatives (decoys). The side-chain packing peculiar character, resembling glass transition dynamics with
decoys generated by this algorithm are used to developits signature power law relaxation of many characteristics
atom—atom potentials for protein folding using potential such as total energy. A detailed analysis of such relaxation
optimization technique¥.23+233 processes requires a new theoretical approach based on
The large conformational space of side chains even in the mode-coupling theor§?>-23" A general theoretical formalism
tightly packed state suggests that there may be a peculiabased on mode-coupling theory applicable to homo- and
dynamics of their packing during folding. Again, all-atom heteropolymer dynamics has been developed in ref 237. It
folding simulations proved an invaluable tool to address this was shown there that in the low temperature regime a glass
difficult question. The analysis of many individual trajectories transition that would feature a long-time nonexponential
for protein G folding makes it possible to develop a very relaxation of energy may indeed occur. However, this is only
detailed picture of how side chains get organized in the a small initial step. A comprehensive theory that would treat
folding process, and the results are quite interesting. It directly side-chain relaxation in proteins is a matter of future
appears that there is a broad distribution in time scales for development.

Further analysis of protein G folding trajectories revealed
a complex folding scenario whereby the major features of
protein topology and packing of nucleus side chains get
established first concurrently with nucleation while side-chain
packing of the rest of the structure occurs over a longer time
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4.14. From Ensemble to Single Molecules —Pulling require knowledge of the native state and that may be
and Stretching transferable between proteins. This task is extremely chal-
lenging, as many who work in protein structure prediction

and simulations may appreciate. A few avenues can be
explored here. Fundamentals of simple knowledge-based
approaches using quasichemical approximation of the type

The analysis of protein G foldiré suggested (perhaps
not surprisingly) that ensemble averaging in experiments
may conceal important features of folding pathways. To

this end, single-molecule studies appear to be a very
important complementary approach to elucidate folding pioneered by Tanaka and Scheréigand further developed

kinetics and landscapes. The first successful single—moleculeby Miyazawa and Jernigéff were studied and generalized

. ; : to an atomic level of descriptiéf>*¢by Skolnick and co-
z:)u;l}/tr? ;ggte'/:‘ forl]cilllg%(\:;asor;ukzﬁgreedsgz gHothSc}ir 25 S%ﬁnd workers. In particular, these authors addressed the difficult

lowed 7718518723824 iy most cases, protein stability/unfold- guestion of what should be considereteéerence statéor

ing was probed in mechanical AFM experiments when the such potentials. The reference state issue concerns the

molecule was mechanically stretched (with the notable ?gg;;i%ingfaﬁaa'r;g';:mfrg%sﬁﬁgfsa'r? mgar?iﬁs?ulvg?:[g tiggl
exception of the optical tweezers approach of Bustamante P ' y. any 9

and co-workers?) signal about interactions should manifest itself in differences
The theoretical foundation for understanding the mechan- between observed statistics of interatomic contacts in proteins

ical response of proteins in single-molecule experiments startsand those of the reference state. Another class of approaches

) e )
from the analytical theory of mechanical properties of areZ-score and related optimization _methéél§ A more
random heteropolymef&2iThis theory predicted a regime recent new approach to design atomic potentials for protein

of gradual stretching of a heteropolymer when a force Comes;czlc?rlr?ig ngtsecrﬁ;?slogj e%lgk%urr(laaatﬁ.sgés ?gtsjg %T]Zf'ee({}tégnrgf
close to a critical valud,, with intermediate structures P P g

resembling a bead on a string. Furthermore, a phase diagrarr?egnb.le Eo'b"_"?’edf Enerﬁ;eélcs 35 m(;JCh as _p(|355|rt])le_. To this
of a stretching heteropolymer was presented as a functionS"d: 1N the spirit of knowledge-based potentials, the interac-

of temperature and stretching force that outlined the regimesggpascgf/tgnV\(/)hbiEaer?é)?se;?s?(arrc::?rlmrt]esrggt(i:grﬁrseZrzrr?ngfeermeeSI;?voere
where such intermediates can be observed. This results i ' P '

behavior that is quite different from that of mechanical r:gg fﬁgg tgfctok:gcindeeww?t?wtfhn;%o(ca(l)l'lggtitahlev\ﬂ?et:inégrli)vgd on
proteins, most notable titin, where domains unfold in a two- 9 : d be cl P h ol
state manner at or around the critical fofé&dowever, titin one protein and can be closest to the Go potential in terms

is a protein selected by evolution to perform mechanical pfdenergdetlc blqs_to tdhe natlvi state when derlvgd on an
functions. When a nonmechanical protein underwent stretch-""A€PEN ent training dataset of protein structures:

ing, it exhibited much more gradual unfoldiftjn complete -

agreement with theoretical predictions, because, from the E - “#Nag T (1~ 1)Npg (5.1)
point of view of special mechanical properties, barnase AB UNg + (1_#)NAB '
(studied in ref 240) is not an evolutionary selected protein.
An interesting and important extension of this study is to
develop a theory and simulations of mechanical proteins, i.e.
the ones selected by evolution to perform mechanical
functions—such as titin. This effort should combine simula-

whereEpg is the contact interaction energy between atom
'types A and B,Nag is the number of AB pairs found in
contact, and\g is the number of AB pairs in the database

) X X that are not in contact: is a parameter that determines the
tions in coarse-grained as well as all-atom models and

. : o .S . > average interaction (repulsion or attraction); it can be chosen
bioinformatics analysis aimed at determining which residues . provide a uniform and high (E20%) acceptance rate in

%Monte Carlo simulations by preventing overly rapid collapse
or excessively slow compaction. The advantage of the new

. i potential (eq 5.1) is that interaction energies between all atom
5. Toward Realistic Transferable Sequence-Based types are confined to the range of valuesl( 1), avoiding

Potentials for Protein Folding and Design occasional overestimation of repulsive interactions in qua-

The all-atom Monte Carlo algorithm and several other sichemical methods in cases when interactions are not
efficient all-atom and coarse-grained folding dynamics observed in the database. A systematic comparison of all
algorithms are valuable tools to study folding dynamics and methods to derive atomic potentials (quasichemical ap-
thermodynamics. However, any folding study has two major proximationu-potentials, and optimization techniques) was
components: (a) a search strategy/dynamic algorithm andanalyzed in a recent papér based on results of fold
(b) an energy function that should select the native structurerecognition in gapless threading and against standard sets
as the global minimum. The energy function used in most of decoys. It appears that all derived potentials show a
of the all-atom studies described above is based on the Gosignificant degree of consistency in the sense that in all cases
prescription. This may be a good choice to study the folding the dominant interactions contributing to stabilization of the
mechanism as it indeed guarantees that the native state imative fold are the same (interaction between side-chain
the global energy minimum. However, it requires knowledge atoms of aliphatic groups). However, in terms of performance
of the native structure (or at least NOESY constraints from (Z-score of the native conformation);potentials perform
NMR experiments) and may underestimate the energeticbetter than quasichemical potentials and about as well as
contribution and persistence of some non-native contacts.optimized nontransferable potentials. This is important given
The latter were shown to play a possible role in nucleus thatu-potentials were derived on an independent dataset of
formation, as predicted in simulations and bioinfomatics proteins and were not optimized to perform a specific task.
analysig*® and confirmed in experime#t? The first application of the:-potential was for folding of

The next step, therefore, is to develop atomic sequence-a small three-helix bundle protein. It showed repetitive and
based potentials for all-atom simulations that would not systematic folding withi a 2 A rmsd from the crystal

simulations along these lines were reported receftly.
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Figure 10. Clustering of 200 conformations obtained in 200 independent simulation runs of an all-atom MC folding algorithm with a
sequence-based transferable atomjmtential for protein A (1BDD¥#* Each node corresponds to the lowest energy conformation obtained

in each run, and an edge is drawn between any two conformations if the rmsd between them is less than 3.5 A. The color code indicates
the rmsd from the native structure: purpte4 A; blue, <5 A; green,<6 A; yellow, <7 A; orange,<8 A; red, >8 A. The central cluster

giant componentcontains all nativelike structures, while “peripheral” nodes are mostly misfolds. The right panel shows the control: clustering

of 200 conformations obtained in the same way but featadomsequence with the same composition as that for 1BDD. Comparison
clearly shows that we observe sequence-guided nontrivial folding and that clustering focuses the landscape for the real sequence toward the
correct native structure. (Reprinted with permission from ref 54. Copyright 2005 National Academy of Sciences, U.S.A.)

structure?*® However, this was not a fully transferable resulted in a collection of conformations from which the
u-potential; it was derived using statistics of contacts in the native structure of simulated proteins could not be identified
native structure of protein A itself. However, the potentials by energy or any graph-theoretical criteria. However, inter-
derived from different databases seem to be strongly cor-estingly, some infrequent conformations were found that
related?*® which is an encouraging sign that the potential exhibited relatively low (4.2 A) rmsd with the native
may be transferable. A more stringent test of atomic structures of some proteins. This result may reflect some
potentials was made recendyThe energy function used conclusions from the distributed computing approach where
for this study represented a linear combination of the explicit many folding simulations are run independently on a grid
hydrogen bonding potential (well suited to stabilize helical of computers. Some conformations were found in distributed
but not conformations) and the-potential derived on an ~ computing among many simulations that were close in rmsd
independent database of 103 proteins that did not containto the native structure of a small target proteirllin
tested proteins or their homologues. Eighty-four atom types headpiecé?®?5'However, these low rmsd conformations did
were considered (same as described in ref 249). Simulationsnot appear to be the lowest energy ones. A possibility exists,
performed on seven small nonhomologeubkelical proteins therefore, that low-rmsd conformations observed in distrib-
showed encouraging results, providing in six out of seven uted computing simulations are the result of random collapse
cases folding to less that A rmsd structures from the native  rather than sequence-based energy-guided folding. A similar
state. The analysis of simulation results included clustering random control for distributed computing simulations is
of structures and observation that the largest disjoint claster necessary to address this important concern.
the giant componentcontained the most nativelike confor-  Another control concerns the issue of the relative impor-
mations (Figure 10). tance of pairwise interactions vs explicit hydrogen bonds in
Various graph-theoretical measures were tried to select theformation of proper protein-like conformations. To this end,
“best” prediction, and it appeared that the most connecteda number of simulations were performed using an energy
conformations-the ones that have the most similar confor- function in which the explicit hydrogen bond term was turned
mations—appeared to be statistically closer to the native state. off. The resulting conformations formed almost perfect
Energy alone was effective but was not the most effective hydrophobic cores and were as compact as native ones but
predictor of the nativelike conformations. One possibility, did not contain any helixes (less than 1% helical content)
as pointed out by Baker and Shortfé s that a clustering  (Figure 11).
procedure alleviates some inaccuracies that are present with This result, while it appears almost obvious, is nevertheless
inexact potentials, taking advantage of a possibly greaterimportant in light of recent suggestions that geometrical/
number of states surrounding the native structure of the topological and generic factors alone (such as excluded
protein rather than infrequent low-energy decoys. Het- volume, topological constraints, compactness) are sufficient
eropolymer theory is consistent with that view, pointing out to provide a protein-like architecture of compact polypeptide
that “random decoys” are akin to deep minima in random globules (modeled as polymers with “finite thicknes¥?):254
heteropolymers and represent isolated small sets of confor-In a further development, the same authors incorporated an
mations on a rugged landscape, as explained in section 2explicit hydrogen bond into their mod&tto explain existing

while nativelike structures are less randomly organi2€8.  protein architectures. This view appears more consistent with
Caflisch observed a similar phenomenon using a different results of simulations and an earlier proposal by Ptitsyn and
clustering approacha protein folding network? Finkelsteir?%¢ Most recently, Skolnick and coauthors showed

Of special interest are the control simulations carried out that a collection of compact structures with hydrogen bonding
for this study?* Simulation of randomized sequence folding is able to reproduce the complete PBB.
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Crystal structure Model Model (no hydrogen bonds)

Figure 11. Protein models from the PDB and representatives from simulation. Model simulations with a full energy fungimtertial

pairwise interactiont hydrogen bonding) fold to near native conformations while simulations without hydrogen bonding collapse without
helices. Excluded volume and an attractive potential ensure a protein-like hydrophobic core and side-chain packing. However, representation
of hydrogen bonding interactions is essential for formation of secondary structure.

6. Concluding Remarks. Is the Protein Fo/ding likely, the “final solution” will combine elements of many
Problem Solved? mechanisms that researchers observed in simplified models
in more pure forms, so that in a sense the best “multiple-
Well, the answer to this question “depends on what ‘is’ choice” answer will sound like “all of the above”. Neverthe-
is” (William Jefferson Clinton). While many (but not all) less, we are bound to witness decisive progress in studies of
conceptual aspects of protein folding (that used to be centeredprotein folding in the coming years.
around the “Levinthal paradox”) appear well understood and
established, there is a lot of room for development and further 7 Acknowledgments
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